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Finally, let us mention that the line integral has another important physical meaning,
specifically, the interpretation of |, ¢ V- ds as circulation, where V is the velocity field
of a fluid, as we shall discuss in Section 8.2. Thus, a wide variety of physical concepts,
from the notion of work to electromagnetic fields and the motions of fiuids, can be
analyzed with the help of line integrals.

exercises

1. Evaluate the line integral

]F~ds,
o

where F(x, y) = y2i — xyj and C is the part of the circle
x% 4 y% = 1 that starts at (1, 0) and ends 2t (0, 1),
-oriented counterclockwise,

2. Repeat Problem 1 for F == 32 + 2xvj, where C is the
entire unit circle 2 + y2 = 1.

3. Let F(x, y, z) = xi+ vj + zk. Evaluate the integral of F
atong each of the following paths:

(a) eff) = (1, ¢ 1), 0<r=<1

(b) ef) = (cost, sint, 0}, O0<r<2m
{c) ofr) = {sint, 0, cost), 0<t<2x
(A efry =(22,30,20%), ~1<t=<2

4. Evaluate each of the following line integrals:

(a2} fcxdymydx,
0<r<2x

®) [, xdx+ydy,
0=<r=2

e{t) = (cosz, sinf),
e(t) = (cos e, sin ),

(¢) [ yzdx+xzdy+ xydz, where ¢ consists of
straight-line segments joining (1, &, 0) to (0, 1, 0) to
(0,0, 1)

(d) [ x*dx—xvdy+ dz, where ¢ is the parabola
z=x% y =0 from(~1,0,1)to(I,0,1).

5. Consider the force field F(x, v, 2) = xi + yj+ zk.
Compute the work done in moving a particle along the
patabola y =x%, 7 =0, fromx = —] to x = 2.

6. Let ¢ be a smooth path.
{a} Suppose F is perpendicular to ¢(r) at the point e(7).

Show that
/F -ds =0
[

19.

(b} IfF is parallel to ¢'(¢) at ¢{¢), show that

/F- dsx/‘NFﬁdS.

{By paralle! to ¢/(f} we mesn that
Fle(r)) = A{r)e/(r), where A(2) > 0.]

Suppose the path ¢ has Tength 7, and ||F|| < M. Prove

that
/F- a’s‘g < Ml
€

. Evaluate [ F. ds, where F(x, y, z) = yi + 2xj + vk

and the path ¢ is defined by e(f) = #i +1°j + °k,
0<t=<l

Evaluate

fydx+(3y3 —x)dy+zdz
[4

for each of the paths ¢(¢) = (£,#",0), 0 < < 1, where
n=1,2,3,....

This exercise refers to Example 12. Let L be a very long
wire, a planar section of which (with the plane
perpendicular to the wire) is shown in Figure 7.2.14.

Y4

figure 7.2.14 A ploncr section of o iong whe
and d curve Cabout the wire.
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Integrals Over Paths and Surfocés

Suppose this plane is the xy plane. Experiments show
that H is tangent to every circle in the xy plane whose
center is the axis of L, and that the magnitude of H is
constant on every such circle C. Thus, H = HT, where
T is a unit tangent vector to C and K is some scalar,
Using this information, show that H = [/2xr, where r
is the radiug of circle € and [ is the current flowing in
the wire.

The image of the path ¢ (cos3 £, sin® H,0<t <2x
irt the plane is shown in Figure 7.2.15. Evaluate the
integral of the vector field Fix, y} == xi -+ yj around this
curve.

0. =(3)

-1, 0y = e(m) 11, 0) = of0) = o{27)

figure 7.2.18 The hypocycloid e(f) = (cos® tan® B
{Exerclse 11).

Suppose ¢; and ¢ are two paths with the same endpoints

and F is a vector field. Show that fq F.dsz= fuz F-ds
is equivalent to fc F. ds = 0, where C is the closed
curve obtained by first moving along ¢; and then moving
along ¢z in the opposite direction.

Let e(r) be a path and T the unit tangent vector. What is
J.T-ds?
<

Let F == (2% 4 233 + x2} + 3xz2k. Show that the
integral of F around the circumference of the unit square
with vertices (1, =1} is zero.

Using the path in Exercise 11, observe that a ! map
¢ [, 5] — R® can have an image that does not “look
smooth.” Do you think this couid happen if ¢/(r) were
always nonzero?

What is the value of the integral of a gradient field
around a closed curve C'7

i7.

15

19

20.

Evaluate the line integral
/ 2xyz dx + X’z dy + xzy dz,
c

where C is an oriented simple curve connecting (1, 1, 1) -
t0(1,2, 4.

Suppose Vf(x, y,z) = nyze"zi -+ zexzj -+ yexzk, If
F(0,0,0) =5, find f(1,1, 2.

Consider the gravitational force field (with
G =m == M = 1) defined [for (x, ¥, 2} (0, 0, )] by

1
Flx, y,2) = — 5 (xi+ yj + 2k},

(x% + 32 + 29/
Show that the work done by the gravitational force as a
particle moves from (x1, y1. 21} to (x32. y2, 22} along any’
path depends oniy on the radii Ry = \/x} + y7 + =

and Ry = \/xzz +y;2 +z%.

A cyclist rides up a mountain along the path shown in
Figure 7.2.16. She makes one complete revolution
around the mountain in reaching the fop, white her
vertical rate of climb is constant, Throughout the trip she
exerts a force described by the vector field

Flx,y,z) =yt +xj+k

What is the work done by the cyclist in fraveling from
A to B? What is unrealistic about this model of a cyclist?

figure 7.2.%8 How much work is done in
cyeling up this mountain?

21. Letc: {a, b] — R be a path such that ¢/(¢) # 6. Recall

from Section 4.1 that when this condition hoids, ¢ is said
io be regular. Let the function f be defined by the
formula '(x) = J;x lie'(2)]| dt.

{a) Whatis df/dx?

(b} Using the answer to part (a), prove that
St a, B) - [0, L], where L is the length of ¢, has &




7.3 Porometrized Surfaces
differentiable inverse g: [0, L] — [a, b] satisfying (a) An adiabatic process is a thermodynamic motion
fogls)=s,go f(x) = x.(You may use the (F(1), T(1), P{r)) for which
one-variable inverse function theorem stated at the
beginning of Section 3.5.) ar. _ drjdr _éff_.

LLD {c) Compute dg/ds. av. - dvjd Ky
(d) Recall that a path s > b(s) is said to be of unit If the van der Waals gas undergoes an adiabatic
speed, or parametrized by arc length, if [b/(s) = 1. process in which the volume doubles to 21y,
f Show that the reparametrization of ¢ given by compute
bi(s) = ¢ o g(s) is of unit speed. Conclude that any (1) the heat gained,
regular path can be reparametrized by arc length. (2) the work done; and
{Thus, for example, the Frenet formulas in Exercise (3) the final volume, temperature, and pressure.
Dby 23 of Sﬂ(’tif’“ ‘?-2 can be applied to the (b} After the process indicated in part (a), the gas is
reparametrization b.} cooled (or heated) at constant volume until the
k). ) original temperature Tj is achieved. Compute
: 22. Along a “thermodynamic path” C in (¥, T, P) space, (1) the heat gained;
sasa : (i) The heat gained is [, Ay d¥ + Ky dT, where (2 the work done; and
tig any Ay, Ky are functions of (¥, T, P), depending on {3) the final volume, temperature, and pressure.
- Z? : the particalar physical system. {c} Afler the process indicated in part (b), the gas is
. () The work done is fc Pav. compressed until the gas returns fo its original
volume ¥p. The temperature is held constant
nin For a van der Waals gas, we have throughout the process. Compute
. (1} the heat gained;
r RT a RT o :
3 PV, T) = - JAy = ’ (2) the work done; and
rip she : V-5 y2 Vb (3) the final volume, temperature, and pressure.
and Ky = constant, - (d) For the cyclic process described in parts (a), (b), (<),
compute
where R, b, a, and J are known constants. Initially, the (1} the total heat gained; and
rom gas is at a temperatwre Ty and volume 5. (2) the total work done.
yelist? :
7.3 Parametrized Surfaces
In Sections 7.1 and 7.2, we studied integrals of scalar and vector functions along curves.
Now we turn to integrals over surfaces and begin by studying the geometry of surfaces
themselves.
Graphs Are Too Restrictive
We are already used to one kind of surface, namely, the graph of a function f(x, y).
Graphs were extensively studied in Chapter 2, and we know how to compute their
tangent planes. However, it would be unduly limiting to restrict ourselves to this case.
For example, many surfaces arise as level surfaces of functions. Suppose our surface
§ is the set of points (x, y, z), where x — z + z° = 0. Here § is a sheet that (relative
f*eca!l to the xy plane} doubles back on itself {see Figure 7.3.1). Obviously, we want to call
ls said § a surface, because it is just a plane with a wrinkle. However, S is no? the graph
of some function z = f{x, y), because this means that for each (xg, yy) € R? there
must be one zq with (xg, yg, 29) & S As Figure 7.3.1 illustrates, this condition is
violated.
Another example is the torus, or surface of a doughnut, which is depicted in Fig-
has a . ure 7.3.2. Anyone would call & torus a surface; vet, by the same reasoning as before, a




