solution

First note that we cannot *easily* integrate this function using iterated integrals (try it!). Hence (employing the strategy in the quote that opened this chapter), let us try a change of variables. The transformation into spherical coordinates seems appropriate, because then the entire quantity $x^2 + y^2 + z^2$ can be replaced by one variable, namely, ρ^2 . If W^* is the region such that

$$0 \le \rho \le 1$$
, $0 \le \theta \le 2\pi$, $0 \le \phi \le \pi$,

we can apply formula (10) and write

$$\iiint_{W} \exp(x^{2} + y^{2} + z^{2})^{3/2} dV = \iiint_{W^{*}} \rho^{2} e^{\rho^{3}} \sin \phi \, d\rho \, d\theta \, d\phi.$$

This integral equals the iterated integral

$$\int_{0}^{1} \int_{0}^{\pi} \int_{0}^{2\pi} e^{\rho^{3}} \rho^{2} \sin \phi \, d\theta \, d\phi \, d\rho = 2\pi \int_{0}^{1} \int_{0}^{\pi} e^{\rho^{3}} \rho^{2} \sin \phi \, d\phi \, d\rho$$

$$= -2\pi \int_{0}^{1} \rho^{2} e^{\rho^{3}} [\cos \phi]_{0}^{\pi} \, d\rho$$

$$= 4\pi \int_{0}^{1} e^{\rho^{3}} \rho^{2} \, d\rho = \frac{4}{3}\pi \int_{0}^{1} e^{\rho^{3}} (3\rho^{2}) \, d\rho$$

$$= \left[\frac{4}{3}\pi e^{\rho^{3}} \right]_{0}^{1} = \frac{4}{3}\pi (e - 1).$$

example 7

Let W be the ball of radius R and center (0, 0, 0) in \mathbb{R}^3 . Find the volume of W.

solution

The volume of W is $\iiint_W dx \, dy \, dz$. This integral may be evaluated by reducing it to iterated integrals or by regarding W as a volume of revolution, but let us evaluate it here by using spherical coordinates. We get

$$\iiint_{W} dx \, dy \, dz = \int_{0}^{\pi} \int_{0}^{2\pi} \int_{0}^{R} \rho^{2} \sin \phi \, d\rho \, d\theta \, d\phi = \frac{R^{3}}{3} \int_{0}^{\pi} \int_{0}^{2\pi} \sin \phi \, d\theta \, d\phi$$
$$= \frac{2\pi R^{3}}{3} \int_{0}^{\pi} \sin \phi \, d\phi = \frac{2\pi R^{3}}{3} \{ -[\cos(\pi) - \cos(0)] \} = \frac{4\pi R^{3}}{3},$$

which is the standard formula for the volume of a solid sphere.

exercises

1. Suggest a substitution/transformation that will simplify the following integrands, and find their Jacobians.

(a)
$$\iint_{R} (3x + 2y) \sin(x - y) dA$$

(b)
$$\iint_R e^{(-4x+7y)} \cos(7x-2y) dA$$

2. Suggest a substitution/transformation that will simplify the following integrands, and find their Jacobians.

(a)
$$\iint_{R} (5x+y)^{3}(x+9y)^{4} dA$$

(b)
$$\iint_{R} x \sin(6x + 7y) - 3y \sin(6x + 7y) dA$$

3. Let D be the unit disk: $x^2 + y^2 \le 1$. Evaluate

$$\iint_D \exp(x^2 + y^2) \, dx \, dy$$

by making a change of variables to polar coordinates.

4. Let D be the region $0 \le y \le x$ and $0 \le x \le 1$. Evaluate

$$\iint_D (x+y) \, dx \, dy$$

by making the change of variables x = u + v, y = u - v. Check your answer by evaluating the integral directly by using an iterated integral.

5. Let T(u, v) = (x(u, v), y(u, v)) be the mapping defined by T(u, v) = (4u, 2u + 3v). Let D^* be the rectangle $[0, 1] \times [1, 2]$. Find $D = T(D^*)$ and evaluate

(a)
$$\iint_{D} xy \, dx \, dy$$
(b)
$$\iint_{D} (x - y) \, dx \, dy$$

by making a change of variables to evaluate them as integrals over D^* .

- **6.** Repeat Exercise 5 for T(u, v) = (u, v(1+u)).
- 7. Evaluate

$$\iint_D \frac{dx \, dy}{\sqrt{1+x+2y}},$$

where $D = [0, 1] \times [0, 1]$, by setting T(u, v) = (u, v/2) and evaluating an integral over D^* , where $T(D^*) = D$.

- **8.** Define $T(u, v) = (u^2 v^2, 2uv)$. Let D^* be the set of (u, v) with $u^2 + v^2 \le 1$, $u \ge 0$, $v \ge 0$. Find $T(D^*) = D$. Evaluate $\iint_D dx \, dy$.
- **9.** Let T(u, v) be as in Exercise 8. By making a change of variables, "formally" evaluate the "improper" integral

$$\iint_D \frac{dx \, dy}{\sqrt{x^2 + y^2}}.$$

[Note: This integral (and the one in the next exercise) is *improper*, because the integrand $1/\sqrt{x^2+y^2}$ is neither continuous nor bounded on the domain of integration. (The theory of improper integrals is discussed in Section 6.4.)]

10. Calculate $\iint_R \frac{1}{x+y} dy dx$, where R is the region bounded by x = 0, y = 0, x + y = 1, x + y = 4, by using the mapping T(u, v) = (u - uv, uv).

11. Evaluate
$$\iint_D (x^2 + y^2)^{3/2} dx dy$$
, where D is the disk $x^2 + y^2 \le 4$.

12. Let D^* be a v-simple region in the uv plane bounded by v = g(u) and $v = h(u) \le g(u)$ for $a \le u \le b$. Let $T: \mathbb{R}^2 \to \mathbb{R}^2$ be the transformation given by x = u and $y = \psi(u, v)$, where ψ is of class C^1 and $\partial \psi/\partial v$ is never zero. Assume that $T(D^*) = D$ is a y-simple region; show that if $f: D \to \mathbb{R}$ is continuous, then

$$\iint_D f(x, y) dx dy = \iint_{D^*} f(u, \psi(u, v)) \left| \frac{\partial \psi}{\partial v} \right| du dv.$$

- 13. Use double integrals to find the area inside the curve $r = 1 + \sin \theta$.
- 14. (a) Express $\int_0^1 \int_0^{x^2} xy \, dy \, dx$ as an integral over the triangle D^* , which is the set of (u, v) where $0 \le u \le 1, 0 \le v \le u$. (HINT: Find a one-to-one mapping T of D^* onto the given region of integration.)
 - (b) Evaluate this integral directly and as an integral over D^* .
- 15. Integrate $ze^{x^2+y^2}$ over the cylinder $x^2+y^2 \le 4$, $2 \le z \le 3$.
- 16. Let *D* be the unit disk. Express $\iint_D (1 + x^2 + y^2)^{3/2} dx dy \text{ as an integral over } [0, 1] \times [0, 2\pi] \text{ and evaluate.}$
- 17. Using polar coordinates, find the area bounded by the lemniscate $(x^2 + y^2)^2 = 2a^2(x^2 y^2)$.
- Redo Exercise 15 of Section 5.3 using a change of variables and compare the effort involved in each method.
- 19. Calculate $\iint_R (x+y)^2 e^{x-y} dx dy$, where R is the region bounded by x+y=1, x+y=4, x-y=-1, and x-y=1.
- **20.** Let $T: \mathbb{R}^3 \to \mathbb{R}^3$ be defined by

 $T(u, v, w) = (u \cos v \cos w, u \sin v \cos w, u \sin w).$

- (a) Show that T is onto the unit sphere; that is, every (x, y, z) with $x^2 + y^2 + z^2 = 1$ can be written as (x, y, z) = T(u, v, w) for some (u, v, w).
- (b) Show that T is not one-to-one.
- 21. Integrate $x^2 + y^2 + z^2$ over the cylinder $x^2 + y^2 \le 2, -2 \le z \le 3$.

g it to t here

·3 —,

aplify

- 22. Evaluate $\int_0^\infty e^{-4x^2} dx$.
- 23. Let B be the unit ball. Evaluate

$$\iiint_B \frac{dx \, dy \, dz}{\sqrt{2 + x^2 + y^2 + z^2}}$$

by making the appropriate change of variables.

- **24.** Evaluate $\iint_A [1/(x^2 + y^2)^2] dx dy$, where A is determined by the conditions $x^2 + y^2 \le 1$ and $x + y \ge 1$.
- 25. Evaluate $\iiint_W \frac{dx \, dy \, dz}{(x^2 + y^2 + z^2)^{3/2}}$, where W is the solid bounded by the two spheres $x^2 + y^2 + z^2 = a^2$ and $x^2 + y^2 + z^2 = b^2$, where 0 < b < a.
- 26. Use spherical coordinates to evaluate:

$$\int_0^3 \int_0^{\sqrt{9-x^2}} \int_0^{\sqrt{9-x^2-y^2}} \frac{\sqrt{x^2+y^2+z^2}}{1+[x^2+y^2+z^2]^2} \, dz \, dy \, dx$$

27. Let D be a triangle in the (x, y) plane with vertices $(0, 0), (\frac{1}{2}, \frac{1}{2}), (1, 0)$. Evaluate:

$$\iint\limits_{D} \cos \pi \left(\frac{x - y}{x + y} \right) \, dx \, dy$$

by making the appropriate change of variables.

- **28.** Evaluate $\iint_D x^2 dx dy$, where *D* is determined by the two conditions $0 \le x \le y$ and $x^2 + y^2 \le 1$.
- **29.** Integrate $\sqrt{x^2 + y^2 + z^2} e^{-(x^2 + y^2 + z^2)}$ over the region described in Exercise 25.
- 30. Evaluate the following by using cylindrical coordinates.
 - (a) $\iiint_B z \, dx \, dy \, dz$, where B is the region within the cylinder $x^2 + y^2 = 1$ above the xy plane and below the cone $z = (x^2 + y^2)^{1/2}$
 - (b) $\iiint_W (x^2 + y^2 + z^2)^{-1/2} dx dy dz, \text{ where } W \text{ is the region determined by the conditions } \frac{1}{2} \le z \le 1 \text{ and } x^2 + y^2 + z^2 \le 1$
- 31. Evaluate $\iint_B (x + y) dx dy$, where B is the rectangle in the xy plane with vertices at (0, 1), (1, 0), (3, 4), and (4, 3).

- **32.** Evaluate $\iint_D (x + y) dx dy$, where *D* is the square with vertices at (0, 0), (1, 2), (3, 1), and (2, -1).
- 33. Let E be the ellipsoid $(x^2/a^2) + (y^2/b^2) + (z^2/c^2) \le 1$ where a, b, and c are positive.
 - (a) Find the volume of E.
 - (b) Evaluate

$$\iiint_E \left[(x^2/a^2) + (y^2/b^2) + (z^2/c^2) \right] dx \, dy \, dz.$$

(HINT: Change variables and then use spherical coordinates.)

- 34. Using spherical coordinates, compute the integral of $f(\rho, \phi, \theta) = 1/\rho$ over the region in the first octant of \mathbb{R}^3 , which is bounded by the cones $\phi = \pi/4$, $\phi = \arctan 2$ and the sphere $\rho = \sqrt{6}$.
- 35. The mapping $T(u, v) = (u^2 v^2, 2uv)$ transforms the rectangle $1 \le u \le 2$, $1 \le v \le 3$ of the uv plane into a region R of the xy plane.
 - (a) Show that T is one-to-one.
 - (b) Find the area of R using the change of variables formula.
- **36.** Let R denote the region inside $x^2 + y^2 = 1$, but outside $x^2 + y^2 = 2y$ with $x \ge 0$, $y \ge 0$.
 - (a) Sketch this region.
 - (b) Let $u = x^2 + y^2$, $v = x^2 + y^2 2y$. Sketch the region D in the uv plane, which corresponds to R under this change of coordinates.
 - (c) Compute $\iint_R x e^y dx dy$ using this change of coordinates.
- 37. Let *D* be the region bounded by $x^{3/2} + y^{3/2} = a^{3/2}$, for $x \ge 0$, $y \ge 0$, and the coordinate axes x = 0, y = 0.

Express $\iint_D f(x, y) dx dy$ as an integral over the

triangle D^* , which is the set of points $0 \le u \le a$, $0 \le v \le a - u$. (Do not attempt to evaluate

38. Show that $S(\rho, \theta, \phi) = (\rho \sin \phi \cos \theta, \rho \sin \phi \sin \theta, \rho \cos \phi)$, the spherical change-of-coordinate mapping one-to-one except on a set that is a union of finitely many graphs of continuous functions.