Math 547, Exam 1, Spring, 2005

The exam is worth 50 points.
Write your answers as legibly as you can on the blank sheets of paper provided. Use only one side of each sheet. Take enough space for each problem. Turn in your solutions in the order: problem 1, problem 2, ... ; although, by using enough paper, you can do the problems in any order that suits you.

I will e-mail your grade to you.
I will post the solutions on my website later today.

1. (7 points) Let

$S=\left\{\left.\frac{a}{b} \in \mathbb{Q} \right\rvert\,\right.$ either $a=0$, or a and b are relatively prime integers and 3 does not divide $\left.b\right\}$.

Is S a subring of \mathbb{Q} ? Explain.

YES. The set S contains 0 and 1 . If $\frac{a}{b}$ is in S, then $-\frac{a}{b}$ is also in S. The set S is closed under both addition and multiplication. If $\frac{a}{b}$ and $\frac{c}{d}$ are in S, then the demoninator of $\frac{a}{b}+\frac{c}{d}$ is a factor of $b d$. We had b and d were each relatively prime to 3 . We conclude that every factor of $b d$ is also relatively prime to 3 . Of course the product $\frac{a}{b} \frac{c}{d}$ is in S for the same reason.

2. (7 points) Let

$S=\left\{\left.\frac{a}{b} \in \mathbb{Q} \right\rvert\,\right.$ either $a=0$, or a and b are relatively prime integers and 9 does not divide $\left.b\right\}$.

Is S a subring of \mathbb{Q} ? Explain.

NO. The set S is not closed under multiplication since $\frac{1}{3} \in S$; but $\frac{1}{3} \frac{1}{3}=\frac{1}{9} \notin S$.
3. (7 points) Let $\phi: \mathbb{Z}[x] \rightarrow \mathbb{Z}[x]$ be the function which is given by $\phi(f(x))=(f(x))^{2}$. Is ϕ a ring homomorphism? Explain.

NO. We see that $\phi(1+1)=\phi(2)=2^{2}=4$. But, $\phi(1)+\phi(1)=1^{2}+1^{2}=1+1=2$.
4. (7 points) Let $\phi: \frac{\mathbb{Z}}{(2)}[x] \rightarrow \frac{\mathbb{Z}}{(2)}[x]$ be the function which is given by $\phi(f(x))=(f(x))^{2}$. Is ϕ a ring homomorphism? Explain.

YES. The ring $R=\frac{\mathbb{Z}}{(2)}[x]$ has characteristic two. It follows that

$$
\phi\left(r_{1}+r_{2}\right)=\left(r_{1}+r_{2}\right)^{2}=r_{1}^{2}+2 r_{1} r_{2}+r_{2}^{2}=r_{1}^{2}+r_{2}^{2}=\phi\left(r_{1}\right)+\phi\left(r_{2}\right)
$$

for all r_{1} and r_{2} in R. It is also clear that $\phi(1)=1^{2}=1$ and

$$
\phi\left(r_{1} r_{2}\right)=\left(r_{1} r_{2}\right)^{2}=r_{1}^{2} r_{2}^{2}=\phi\left(r_{1}\right) \phi\left(r_{2}\right) .
$$

5. (7 points) Let $\phi: \mathbb{Q}[x] \rightarrow \mathbb{C}$ be the function which is given by $\phi(f(x))=$ $f(\sqrt{2})$. All of us know that this function is a ring homomorphism; you do not have to show me a proof. What is the kernel of ϕ ? Prove your answer.

We show that $\operatorname{ker} \phi=\left(x^{2}-2\right)$.
(\supseteq). Every element of $\left(x^{2}-2\right)$ has the form $\left(x^{2}-2\right) g(x)$ for some $g(x)$ in $\mathbb{Q}[x]$. We see that

$$
\phi\left(\left(x^{2}-2\right) g(x)\right)=\left((\sqrt{2})^{2}-2\right) g(\sqrt{2})=0
$$

Thus, $\left(x^{2}-2\right) g(x)$ is in the kernel of ϕ.
(\subseteq). Let $f(x)$ be in ker ϕ. Divide $x^{2}-2$ into $f(x)$ to get $f(x)=$ $\left(x^{2}-2\right) g(x)+a x+b$ for some polynomials $g(x)$ and $a x+b$ in $\mathbb{Q}[x]$. Apply ϕ to both sides to see that $0=a \sqrt{2}+b$. The number $\sqrt{2}$ is not a rational number; hence, $a=b=0$ and $f(x) \in\left(x^{2}+2\right)$.
6. (8 points) Let $\phi: R \rightarrow S$ be a ring homomorphism.
(a) Prove that $\phi(0)=0$.
(b) Prove that ϕ is one-to-one if and only if $\operatorname{ker} \phi=\{0\}$.
(a) We know that ϕ is a homomorphism; hence, $\phi(0)=\phi(0+0)=\phi(0)+\phi(0)$. We know that every element of S (in particular $\phi(0)$) has an additive inverse in S. Add the additive inverse of $\phi(0)$ to both sides to conclude that $0=\phi(0)$.
(b) (\Rightarrow) If ϕ is one-to-one, then only one element of R is sent to the zero element of S. We saw in part (a) that 0 is sent to 0 . It follows that 0 is the only element of R which is sent to zero and $\operatorname{ker} \phi=\{0\}$.
(\Leftarrow) We assume $\operatorname{ker} \phi=\{0\}$. Suppose r_{1} and r_{2} are in R with $\phi\left(r_{1}\right)=\phi\left(r_{2}\right)$. We see that

$$
\phi\left(r_{1}-r_{2}\right)=\phi\left(r_{1}\right)-\phi\left(r_{2}\right)=0
$$

thus, $r_{1}-r_{2} \in \operatorname{ker} \phi=\{0\}$, and $r_{1}=r_{2}$. We conclude that ϕ is one-to-one.
7. (7 points) Let M be an ideal of the ring R. Suppose that $M \neq R$ and that R is the only ideal of R which properly contains M. Prove that $\frac{R}{M}$ is a field.

We need only show that each non-zero element of $\frac{R}{M}$ has a multiplicative inverse in $\frac{R}{M}$. Pick a non-zero element of $\frac{R}{M}$. This element has the form \bar{a} where a is an element of R which is not an element of M. We must show that the element \bar{a} of $\frac{R}{M}$ has an inverse in $\frac{R}{M}$.

Let (M, a) denote the smallest ideal of R which contains M and a. Observe that $(M, a)=\{m+r a \mid m \in M$ and $r \in R\}$. The hypothesis ensures us that $(M, a)=R$. In other words, there exist elements $m \in M$ and $r \in R$ with $1=m+r a$. We conclude that \bar{r} is the inverse of \bar{a} in $\frac{R}{M}$.

