Math 547, Exam 1, Spring, 2005

The exam is worth 50 points.

Write your answers as legibly as you can on the blank sheets of paper provided. Use only **one side** of each sheet. Take enough space for each problem. Turn in your solutions in the order: problem 1, problem 2, \ldots ; although, by using enough paper, you can do the problems in any order that suits you.

I will e-mail your grade to you.

I will post the solutions on my website later today.

1. (7 points) Let

 $S = \{ \frac{a}{b} \in \mathbb{Q} | \text{either } a = 0, \text{ or } a \text{ and } b \text{ are relatively prime integers and } 3 \text{ does not divide } b \}.$

Is S a subring of \mathbb{Q} ? Explain.

YES. The set S contains 0 and 1. If $\frac{a}{b}$ is in S, then $-\frac{a}{b}$ is also in S. The set S is closed under both addition and multiplication. If $\frac{a}{b}$ and $\frac{c}{d}$ are in S, then the demoninator of $\frac{a}{b} + \frac{c}{d}$ is a factor of bd. We had b and d were each relatively prime to 3. We conclude that every factor of bd is also relatively prime to 3. Of course the product $\frac{a}{b}\frac{c}{d}$ is in S for the same reason.

2. (7 points) Let

 $S = \{ \frac{a}{b} \in \mathbb{Q} | \text{either } a = 0, \text{ or } a \text{ and } b \text{ are relatively prime integers and } 9 \text{ does not divide } b \}.$

Is S a subring of \mathbb{Q} ? Explain.

NO. The set S is not closed under multiplication since $\frac{1}{3} \in S$; but $\frac{1}{3}\frac{1}{3} = \frac{1}{9} \notin S$.

3. (7 points) Let $\phi: \mathbb{Z}[x] \to \mathbb{Z}[x]$ be the function which is given by $\phi(f(x)) = (f(x))^2$. Is ϕ a ring homomorphism? Explain.

NO. We see that $\phi(1+1) = \phi(2) = 2^2 = 4$. But, $\phi(1) + \phi(1) = 1^2 + 1^2 = 1 + 1 = 2$.

4. (7 points) Let $\phi: \frac{\mathbb{Z}}{(2)}[x] \to \frac{\mathbb{Z}}{(2)}[x]$ be the function which is given by $\phi(f(x)) = (f(x))^2$. Is ϕ a ring homomorphism? Explain.

YES. The ring $R = \frac{\mathbb{Z}}{(2)}[x]$ has characteristic two. It follows that

$$\phi(r_1 + r_2) = (r_1 + r_2)^2 = r_1^2 + 2r_1r_2 + r_2^2 = r_1^2 + r_2^2 = \phi(r_1) + \phi(r_2)$$

for all r_1 and r_2 in R. It is also clear that $\phi(1) = 1^2 = 1$ and

$$\phi(r_1 r_2) = (r_1 r_2)^2 = r_1^2 r_2^2 = \phi(r_1)\phi(r_2).$$

5. (7 points) Let $\phi: \mathbb{Q}[x] \to \mathbb{C}$ be the function which is given by $\phi(f(x)) = f(\sqrt{2})$. All of us know that this function is a ring homomorphism; you do not have to show me a proof. What is the kernel of ϕ ? Prove your answer.

We show that $\ker \phi = (x^2 - 2)$.

(⊇). Every element of (x^2-2) has the form $(x^2-2)g(x)$ for some g(x) in $\mathbb{Q}[x]$. We see that

$$\phi((x^2 - 2)g(x)) = ((\sqrt{2})^2 - 2)g(\sqrt{2}) = 0.$$

Thus, $(x^2 - 2)g(x)$ is in the kernel of ϕ .

 (\subseteq) . Let f(x) be in ker ϕ . Divide $x^2 - 2$ into f(x) to get $f(x) = (x^2 - 2)g(x) + ax + b$ for some polynomials g(x) and ax + b in $\mathbb{Q}[x]$. Apply ϕ to both sides to see that $0 = a\sqrt{2} + b$. The number $\sqrt{2}$ is not a rational number; hence, a = b = 0 and $f(x) \in (x^2 + 2)$.

- 6. (8 points) Let $\phi: R \to S$ be a ring homomorphism.
 - (a) Prove that $\phi(0) = 0$.
 - (b) Prove that ϕ is one-to-one if and only if ker $\phi = \{0\}$.
 - (a) We know that ϕ is a homomorphism; hence, $\phi(0) = \phi(0+0) = \phi(0) + \phi(0)$. We know that every element of S (in particular $\phi(0)$) has an additive inverse in S. Add the additive inverse of $\phi(0)$ to both sides to conclude that $0 = \phi(0)$.
 - (b) (\Rightarrow) If ϕ is one-to-one, then only one element of R is sent to the zero element of S. We saw in part (a) that 0 is sent to 0. It follows that 0 is the only element of R which is sent to zero and ker $\phi = \{0\}$.

(\Leftarrow) We assume $\ker\phi=\{0\}$. Suppose r_1 and r_2 are in R with $\phi(r_1)=\phi(r_2)$. We see that

$$\phi(r_1 - r_2) = \phi(r_1) - \phi(r_2) = 0;$$

thus, $r_1 - r_2 \in \ker \phi = \{0\}$, and $r_1 = r_2$. We conclude that ϕ is one-to-one.

7. (7 points) Let M be an ideal of the ring R. Suppose that $M \neq R$ and that R is the only ideal of R which properly contains M. Prove that $\frac{R}{M}$ is a field.

We need only show that each non-zero element of $\frac{R}{M}$ has a multiplicative inverse in $\frac{R}{M}$. Pick a non-zero element of $\frac{R}{M}$. This element has the form \bar{a} where a is an element of R which is not an element of M. We must show that the element \bar{a} of $\frac{R}{M}$ has an inverse in $\frac{R}{M}$.

Let (M, a) denote the smallest ideal of R which contains M and a. Observe that $(M, a) = \{m + ra \mid m \in M \text{ and } r \in R\}$. The hypothesis ensures us that (M, a) = R. In other words, there exist elements $m \in M$ and $r \in R$ with 1 = m + ra. We conclude that \bar{r} is the inverse of \bar{a} in $\frac{R}{M}$.