Math 546, Exam 4, Summer, 2002
PRINT Your Name:
There are 10 problems on 5 pages. Each problem is worth 5 points.
Neither your exam, nor your score, will not be available until class on Monday.

1. Define "group isomorphism". Use complete sentences.

The function φ from the group G to the group G^{\prime} is a group isomorphism if φ is one-to-one, onto, and $\varphi\left(g_{1} * g_{2}\right)=\varphi\left(g_{1}\right) * \varphi\left(g_{2}\right)$ for all g_{1} and g_{2} in G.
2. Let d be the greatest common divisor of the integers a and b. Prove that there exist integers r and s with $d=r a+s b$.
Let $H=\{r a+s b \mid r, s \in \mathbb{Z}\}$. It is clear that H is a subgroup of \mathbb{Z}. We know that every subgroup of \mathbb{Z} is cyclic. Let h be the positive generator of H. We complete the proof by showing that $h=d$.

On the one hand, we know that a and b are each in H. Thus, a and b are each divisible by h. In other words, h is a common divisor of a and b. The number d is the GREATEST common divisor of a and b. It follows that $h \leq d$.

On the other hand, h is in H. So $h=r a+s b$ for some integers r and s. The integer d divides $a ; d$ also divides b. It follows that d divides $r a+s b=h$. The integers d and h are both positive; so h is equal to d, or $2 d$, or $3 d$, etc. At any rate, we have shown that $d \leq h$. Combine the two inequalities to conclude that $d=h$; thereby completing the proof.
3. Let G be the subgroup of $(\mathbb{Z},+)$ which consists of all multiples of 3. Consider the function $\varphi: \mathbb{Z} \rightarrow G$ which is given by $\varphi(n)=3 n$ for all integers n. Prove that φ is an isomorphism.
We check that φ is a homorphism. Take n and m in \mathbb{Z}. We see that

$$
\varphi(n+m)=3(n+m)=3 n+3 m .
$$

On the other hand, we also see that

$$
\varphi(n)+\varphi(m)=3 n+3 m
$$

We conclude that $\varphi(n+m)=\varphi(n)+\varphi(m)$.
We check that φ is onto. Take a typical element g of G. The element g is "a multiple of 3 "; so, $g=3 n$ for some integer n; and therefore, $g=\varphi(n)$.

We check that φ is one-to-one. Take integers n and m with $\varphi(n)=\varphi(m)$. In other words, $3 n=3 m$ in \mathbb{Z}. One may divide by 3 (over \mathbb{Q}, at least) in order to conclude that $n=m$.
4. Prove that the groups $\left(\mathbb{Z}_{4},+\right)$ and $\left(\mathbb{Z}_{8}^{\times}, \times\right)$are not isomorphic. The proof does not have to be long, but it does have to be clear.
The group $\left(\mathbb{Z}_{4},+\right)$ is cyclic with generator $[1]_{4}$. Every element in the group $\mathbb{Z}_{8}^{\times}=\left\{[1]_{8},[3]_{8},[5]_{8},[7]_{8}\right\}$, squares to ther identity element. Thus \mathbb{Z}_{8}^{\times} is not a cyclic group. We know that if two groups are isomorphic and one of them is cyclic, then they both must be cyclic. It follows that $\left(\mathbb{Z}_{4},+\right)$ and $\left(\mathbb{Z}_{8}^{\times}, \times\right)$are not isomorphic.
5. Recall that each element of S_{4} is a function from $\{1,2,3,4\}$ to $\{1,2,3,4\}$. Let

$$
T=\left\{\sigma \in S_{4} \mid \sigma(1)=1\right\}
$$

Is T a subgroup of S_{4} ? Prove your answer.
The set T IS a group. The identity element of S_{4} is in T. The set T is closed because if σ and τ are both in T, then $\sigma \circ \tau$ is in T, since

$$
(\sigma \circ \tau)(1)=\sigma(\tau(1))=\sigma(1)=1
$$

The set T is also closed under the formation of inverse. If σ is in T, then the inverse of σ is a non-negative power of σ (since S_{4} is finite). We already saw that T is closed.
6. Recall that each element of S_{4} is a function from $\{1,2,3,4\}$ to $\{1,2,3,4\}$. Let

$$
W=\left\{\sigma \in S_{4} \mid \sigma(1) \text { is equal to either } 1 \text { or } 2\right\}
$$

Is W a subgroup of S_{4} ? Prove your answer.
The set W is NOT a group because W is not closed. Indeed, (2,3) and $(1,2,3)$ are in W, but $(2,3)(1,2,3)=(1,3)$ is not in W.
7. How many elements of S_{4} have order 2 ?

There are 9 elements of order 2 in S_{4}. There are 6 transpositions (i, j) and there are three elements which are the product of disjoint transpositions $(i, j)(k, \ell)$, with i, j, k, ℓ all distinct.
8. Let $\mathbb{R}^{\text {pos }}$ represent the group of positive real numbers under multiplication.

Exhibit an isomorphism from the group $\mathbb{R}^{\text {pos }} \times U$ to the group $(\mathbb{C} \backslash\{0\}, \times)$.
Prove that your isomorphism really is an isomorphism.
Define $\varphi: \mathbb{R}^{\text {pos }} \times U \rightarrow \mathbb{C} \backslash\{0\}$ by $\varphi(r, u)=r u$, for $r \in \mathbb{R}^{\text {pos }}$ and $u \in U$. We see that φ is a homomorphism. Take (r, u) and (s, v) from $\mathbb{R}^{\text {pos }} \times U$. Observe that

$$
\varphi((r, u)(s, v))=\varphi(r s, u v)=r s u v, \text { and }
$$

$\varphi(r, u) \varphi(s, v)=r u s v$. These two expressions are equal because complex multiplication is commutative.

We see that φ is onto. Let $z=a+b \imath$ be a non-zero complex number. We see that the modulus $|z|=\sqrt{a^{2}+b^{2}}$ is a positive real number with $z /|z|$ a number in U. Thus, $(|z|, z /|z|)$ is an element of $\mathbb{R}^{\text {pos }} \times U$, with $\varphi(|z|, z /|z|)=|z|(z /|z|)=z$ 。

We see that φ is one-to-one. Take (r, u) and (s, v) from $\mathbb{R}^{\text {pos }} \times U$ with $\varphi(r, u)=(s, v)$. It follows that $r u=s v$. Take the modulus of both sides to see that $r=|r u|=|s v|=s$. Divide both sides by $r=s$ to see that $u=r u / r=s v / r=s v / s=v$. We have shown that $r=s$ and $u=v$. We conclude $(r, u)=(s, v)$.
9. Is the group $D_{4} \times U_{3}$ isomorphic to the group S_{4} ? Exhibit an isomorphism or prove that the groups are not isomorphic.
These groups are NOT isomorphic. The group $D_{4} \times U_{3}$ contains an element of order 6 , namely, (σ, u), where u is a cube root of 1 , which does not equal 1. On the other hand, S_{4} does not contain any elements of order 6. We know that if $\varphi: G \rightarrow G^{\prime}$ is a group isomorphism, then $\varphi(g)$ and g have the same order for each g in G.
10. Express the permutation $(6,9)(4,7,9)(4,8)$ as a product of disjoint cycles. The permutation is equal to $(4,8,7,6,9)$.

