PRINT Your Name: \qquad

Quiz for September 29, 2011

Give an example of a group G and elements a and b in G such that a and b each have finite order but $a b$ does not have finite order.

Answer: Example 1. Let $G=\operatorname{Sym}(\mathbb{C})$. We showed in class that $\operatorname{rot}_{\varphi} \circ \operatorname{refl}_{0}=$ $\operatorname{refl}_{\varphi / 2}$. It follows that $\operatorname{rot}_{\varphi}=\operatorname{refl}_{\varphi / 2} \circ \operatorname{refl}_{0}$. The functions $\operatorname{refl}_{\varphi / 2}$ and reff_{0} both have order 2 ; but we can make $\operatorname{rot}_{\varphi}$ have any order. In particular, if $\varphi=1$ radian, then $\operatorname{rot}_{\varphi}^{n}=\operatorname{rot}_{n}$ and $\operatorname{rot}_{\varphi}$ has infinite order. Indeed, rotation by n radians never is the identity map because n is never an integer multiple of 2π since π is irrational. Take $a=\operatorname{refl}_{\varphi / 2}$ and $b=\operatorname{reff}_{0}$. We have shown that a and b both have order 2 , but $a b$ has infinite order.

Example 2. Again take $G=\operatorname{Sym}(\mathbb{C})$. Let a be reflection across the line $x=0$ and b be reflection across the line $x=1$. Again a and b have order 2 . Convince yourself that $a b$ is translation to the left by 2 . It is clear that translation has infinite order.

