PRINT Your Name:

Quiz for September 29, 2011

Give an example of a group G and elements a and b in G such that a and b each have finite order but ab does not have finite order.

Answer: Example 1. Let $G = \text{Sym}(\mathbb{C})$. We showed in class that $\operatorname{rot}_{\varphi} \circ \operatorname{refl}_0 = \operatorname{refl}_{\varphi/2}$. It follows that $\operatorname{rot}_{\varphi} = \operatorname{refl}_{\varphi/2} \circ \operatorname{refl}_0$. The functions $\operatorname{refl}_{\varphi/2}$ and refl_0 both have order 2; but we can make $\operatorname{rot}_{\varphi}$ have any order. In particular, if $\varphi = 1$ radian, then $\operatorname{rot}_{\varphi}^n = \operatorname{rot}_n$ and $\operatorname{rot}_{\varphi}$ has infinite order. Indeed, rotation by n radians never is the identity map because n is never an integer multiple of 2π since π is irrational. Take $a = \operatorname{refl}_{\varphi/2}$ and $b = \operatorname{refl}_0$. We have shown that a and b both have order 2, but ab has infinite order.

Example 2. Again take $G = \text{Sym}(\mathbb{C})$. Let *a* be reflection across the line x = 0 and *b* be reflection across the line x = 1. Again *a* and *b* have order 2. Convince yourself that *ab* is translation to the left by 2. It is clear that translation has infinite order.