Math 546, Final Exam, Spring, 2001
PRINT Your Name:
Get your course grade from TIPS/VIP late on Tuesday or later.
There are 20 problems on 8 pages. The exam is worth a total of 150 points. Problems 1 through 10 are worth eight points each. Problems 11 through 20 are worth 7 points each.

1. DEFINE group.
2. DEFINE cyclic group.
3. DEFINE the center of a group.
4. DEFINE normal subgroup.
5. STATE Lagrange's Theorem.
6. STATE the lemma from number theory about linear combinations and greatest common divisors.
7. STATE the "Chinese Remainder Theorem" about the group $\mathbb{Z}_{n} \times \mathbb{Z}_{m}$ and the group $\mathbb{Z}_{n m}$.
8. STATE the lemma about the order of the element $a b$ in terms of the order of a and the order of b.
9. STATE the two results about the subgroups of a cyclic group.
10. Pick one of the statements from problems 5 through 9 . Tell me which statement you have chosen. PROVE the statement.
11. Pick a second statement from problems 5 through 9 . Tell me which statement you have chosen. PROVE the statement.
12. What is the order of the element $\left(\cos \frac{\pi}{3}+i \sin \frac{\pi}{3}, \rho\right)$ in the group $U_{6} \times D_{4}$? Explain your answer.
13. Let G be the group $\mathbb{Z}_{4} \times \mathbb{Z}_{10}$. Let N be the subgroup $<(2,2)>$ of G. What is the order of the element $(1,2)+N$ in the group $\frac{G}{N}$? Explain your answer.

14 . Let $\left(\mathbb{R}^{\text {pos }}, \times\right)$ represent the group of positive real numbers under multiplication. Does ($\mathbb{R}^{\text {pos }}, \times$) contain any non-cyclic subgroups? If not, explain why not. If so, exhibit such a subgroup and explain why the subgroup is not cyclic.
15. TRUE or FALSE. (If true, PROVE it. If false, give a COUNTER EXAMPLE.) All groups of order 6 are isomorphic.
16. TRUE or FALSE. (If true, PROVE it. If false, give a COUNTER EXAMPLE.) All groups of order 7 are isomorphic.
17. How many permutations in S_{6} have order 4. Explain your answer.
18. Let G be the group of non-zero complex numbers under multiplication. Let G^{\prime} be the group of non-zero 2×2 matrices of the form $\left[\begin{array}{cc}a & b \\ -b & a\end{array}\right]$, with real entries, under multiplication. Consider the function $\varphi: G \rightarrow G^{\prime}$, which is given by $\varphi(a+b i)=\left[\begin{array}{cc}a & b \\ -b & a\end{array}\right]$. Prove that φ is a group isomorphism.
19. Let K and N be subgroups of the group G. Let

$$
S=\{k n \mid k \in K \text { and } n \in N\} .
$$

If N is a normal subgroup of G, then prove that S is a subgroup of G.
20. The subgroup $N=\{\mathrm{id},(12)(34),(13)(24),(14)(23)\}$ of the group S_{4} is normal. The factor group $\frac{S_{4}}{N}$ is isomorphic to which familiar group? Explain your answer.

