Math 546, Exam 3, Spring, 2001
PRINT Your Name:
There are 9 problems on 5 pages. Problem 1 is worth 12 points. Each of the other problems is worth 11 points.

1. Let $\sigma=(1,2,3)(4,5,6)$ and $\tau=(3,4,5)$ be elements of S_{6}. Write $\tau \sigma \tau^{-1}$ as the product of disjoint cycles.
2. Is the group $\left(\mathbb{Z}_{12}^{\times}, \times\right)$a cyclic group? Why or why not?
3. Is the group $\left(\mathbb{Z}_{9}^{\times}, \times\right)$a cyclic group? Why or why not?
4. Let A be a set and b be an element of A. Is

$$
\{\sigma \in \operatorname{Sym}(A) \mid \sigma(b)=b\}
$$

always a subgroup of S_{A} ? If your answer is yes, then PROVE the statement. If your answer is no, then give a COUNTEREXAMPLE.
5. Let A be a set, B be a subset of A, and b be an element of B. Is

$$
\{\sigma \in \operatorname{Sym}(A) \mid \sigma(b) \in B\}
$$

always a subgroup of S_{A} ? If your answer is yes, then PROVE the statement. If your answer is no, then give a COUNTEREXAMPLE.
6. Let H be a subgroup of the finite group G. Let $x \in G$, and let $[x]=\left\{y \in G \mid x y^{-1} \in H\right\}$. Prove that H and $[x]$ have the same number of elements.
7. Let H be the subgroup $\{(1),(12),(13),(23),(123),(132)\}$ of S_{4}. Let x be the element (124) of S_{4}, and let $[x]=\left\{y \in G \mid x y^{-1} \in H\right\}$. List the elements of $[x]$. (Each element of $[x]$ should appear in your list exactly once.)
8. How many permutations in S_{6} have order 3? Explain your answer.
9. Let m and n be integers, and let d be the greatest common divisor of m and n. Prove that there exists integers r and s with $d=r m+s n$.

