Math 546, Final Exam, Summer, 1993
Use your own paper. Each problem is worth 10 points.

1. Let $\sigma=(1,3,2)(4,6,5)$ and $\tau=(3,4,5)$ be elements of S_{6}. Write $\tau \sigma \tau^{-1}$ as the product of disjoint cycles.
2. Let a be a fixed element of the group G. Define the function $\varphi: G \rightarrow G$ by $\varphi(g)=a g a^{-1}$ for all g in G. Prove that φ is a group ISOMORPHISM.
3. TRUE or FALSE: If H_{1} and H_{2} are subgroups of the group G, then the UNION $H_{1} \cup H_{2}$ is also a subgroup of G. If the statement is true, then PROVE it. If the statement is false, then give a COUNTEREXAMPLE.
4. Let G be a group and let C be the following subset of G :

$$
C=\{c \in G \mid c x=x c \text { for all } x \in G\} .
$$

Prove that C is a subgroup of G.
5. What is the order of the element $(1,1)$ in the group $\mathbb{Z}_{9} \times \mathbb{Z}_{6}$? Why?
6. Let H be a subgroup of the group G. Suppose that a and b are elements of G with $a H=b H$. Does $a^{-1} H$ HAVE TO EQUAL $b^{-1} H$? If your answer is "yes", then PROVE the statement. If your answer is "no", then give a counterexample.
7. What is the order of the element $(3,3)+<(1,2)>$ in the group $\frac{\mathbb{Z}_{4} \times \mathbb{Z}_{8}}{<(1,2)>}$? Why?
8. Let $\varphi: \mathbb{Z} \times \mathbb{Z} \rightarrow S_{3}$ be the function which is defined by

$$
\varphi(n, m)=(1,2)^{n}(1,3)^{m} .
$$

Is φ a homomorphism? Why?
9. Let U be the group of complex numbers of modulus one under multiplication, let \mathbb{R} be the group of Real numbers under addition, and let N be the subgroup

$$
N=\{2 \pi n \mid n \in Z\}
$$

of \mathbb{R}. Prove that $\frac{\mathbb{R}}{N}$ is isomorphic to U.
10. Let $\varphi: G \rightarrow G^{\prime}$ be a group homomorphism. Prove that

$$
\bar{\varphi}: \frac{G}{\operatorname{ker} \varphi} \rightarrow G^{\prime}
$$

given by $\bar{\varphi}(a \cdot \operatorname{ker} \varphi)=\varphi(a)$, is a well-defined function.

