3. Define $*$ on $\mathbb{Q} \backslash\{0\}$ by $a * b=\frac{a}{b}$. Is $(\mathbb{Q} \backslash\{0\}, *)$ a group? Why or why not?

No. The associative property does not hold.

$$
\begin{array}{ll}
2 *(2 * 2)=2 * \frac{2}{2}=2 * 1=\frac{2}{1}=2 \\
(2 * 2) * 2= & \frac{2}{2} * 2=1 * 2=\frac{1}{2}
\end{array}
$$

Thus $2 *(2 * 2) \neq(2 * 2) * 2$
4. Recall that $\mathrm{GL}_{2}(\mathbb{R})$ represents the group of invertible 2×2 matrices with real number entries. The operation in $\mathrm{GL}_{2}(\mathbb{R})$ is matrix multiplication. The matrix

$$
A=\left[\begin{array}{ll}
1 & 0 \\
2 & 1
\end{array}\right]
$$

is an element of $\mathrm{GL}_{2}(\mathbb{R})$. What is A 's inverse?
A^{\prime} ' inverse is $\left[\begin{array}{cc}1 & 0 \\ -2 & 1\end{array}\right]$ be case

$$
\begin{aligned}
& {\left[\begin{array}{rr}
1 & 0 \\
2 & 1
\end{array}\right]\left[\begin{array}{rr}
1 & 0 \\
-1 & 1
\end{array}\right]=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right] \text { an } 1} \\
& {\left[\begin{array}{rr}
1 & 0 \\
-2 & 1
\end{array}\right]\left[\begin{array}{ll}
1 & 0 \\
2 & 1
\end{array}\right]=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]}
\end{aligned}
$$

