3. Define * on $\mathbb{Q} \setminus \{0\}$ by $a*b = \frac{a}{b}$. Is $(\mathbb{Q} \setminus \{0\}, *)$ a group? Why or why not?

No. The associative Property does not hold.

$$2 * (2 * 2) = 2 * ? = 2 * 1 = ? = 2$$
 $(2 * 2) * 2 = 2 * 2 = 1 * 2 = 1$

Thus $2 * (2 * 2) + 2 = 4$
 $(2 * 2) * 2 = 4$

4. Recall that $GL_2(\mathbb{R})$ represents the group of invertible 2×2 matrices with real number entries. The operation in $GL_2(\mathbb{R})$ is matrix multiplication. The matrix

$$A = \begin{bmatrix} 1 & 0 \\ 2 & 1 \end{bmatrix}$$

is an element of $\operatorname{GL}_2(\mathbb{R})$. What is A's inverse?

A'S inverse is
$$\begin{bmatrix} 1 & 0 \\ -2 & 1 \end{bmatrix}$$
 be cause $\begin{bmatrix} 1 & 0 \\ -2 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$ and $\begin{bmatrix} 1 & 0 \\ -2 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$.