PRINT Your Name:

Get your course grade from **TIPS/VIP** late on Monday or later; or e-mail your e-mail address to me and I will e-mail your grade to you.

There are 20 problems on 8 pages. The exam is worth a total of 100 points. Each problem is worth 5 points.

- 1. DEFINE group isomorphism.
- 2. DEFINE generator.
- 3. DEFINE centralizer.
- 4. DEFINE normal subgroup.
- 5. STATE Lagrange's Theorem.
- 6. STATE the lemma from number theory about linear combinations and greatest common divisors.
- 7. STATE the lemma about the order of the element ab in terms of the order of a and the order of b.
- 8. Pick one of the statements from problems 5 through 7. Tell me which statement you have chosen. PROVE the statement.
- 9. What is the order of the element $([4]_6, (12)(34))$ in the group $\mathbb{Z}_6 \times S_4$? Explain your answer.
- 10. The subgroup $N = \{ id, (12)(34), (13)(24), (14)(23) \}$ of the group S_4 is normal. What is the order of the element N(1234) in the group $\frac{S_4}{N}$? Explain your answer.
- 11. Let $(\mathbb{R}^{\text{pos}}, \times)$ represent the group of positive real numbers under multiplication. Is $(\mathbb{R}^{\text{pos}}, \times)$ isomorphic to $(\mathbb{R}, +)$? If so, exhibit an isomorphism between the two groups. If not, explain why not.
- 12. Exhibit two groups of order 25 which are not isomorphic. Explain why the groups are not isomorphic.
- 13. Consider $\varphi \colon \mathbb{Z}_4 \to \mathbb{Z}_{12}$, which is given by $\varphi([a]_4) = [a]_{12}$. Is φ a function? Explain.
- 14. Consider $\varphi \colon \mathbb{Z}_{12} \to \mathbb{Z}_4$, which is given by $\varphi([a]_{12}) = [a]_4$. Is φ a function? Explain.
- 15. How many permutations in S_6 have order 4. Explain your answer.

- 16. What is the inverse of $[39]_{83}$ in $(\mathbb{Z}_{83}^{\times}, \times)$. Check your answer.
- 17. TRUE or FALSE. (If true, PROVE it. If false, give a COUNTER EXAMPLE.) All groups of order 5 are isomorphic.
- 18. Recall that $(2\mathbb{Z}, +)$ is the group of even integers. Prove that the function $\varphi: (\mathbb{Z}, +) \to (2\mathbb{Z}, +)$, which is given by $\varphi(n) = 2n$, is a group isomorphism.
- 19. Let K and N be subgroups of the group G. Let

$$S = \{kn \mid k \in K \text{ and } n \in N\}.$$

If N is a normal subgroup of G, then prove that S is a subgroup of G.

20. Let $\,G\,$ be an abelian group. Let $\,H=\{x^2\mid x\in G\}\,.$ Prove $\,H\,$ is a subgroup of $\,G\,.$