8. (6 points) This problem has THREE parts. Let a and b be elements of finite order in a group G.
(a) LIST two hypothesis so that if a and b satisfy these hypotheses, then the order of $a b$ is equal to the order of a times the order of b.
(1) $\theta(a)$ and $\theta(b)$ ale felatioely prime.
(2) $a b=b a$
(b) Give an EXAMPLE where the FIRST hypothesis holds, but the SECOND hypothesis fails and the conclusion fails.

$$
\begin{aligned}
& \text { Tale } \sigma \text { and } P \text { in } D_{3}: \theta(T)=2 \theta(P)=3 \quad 2 \text { and } 3 \text { ate } \\
& \text { relations prince but } \sigma \rho \neq \rho \sigma \text { and } \theta(T P)=2 \neq 2.3
\end{aligned}
$$

(c) Give an EXAMPLE where the SECOND hypothesis holds, but the FIRST hypothesis fails and the conclusion fails.

$$
\text { Take } \sigma \text { and } \rho^{2} \text { in } D_{4}: \sigma \rho^{2}=\rho^{2} \sigma \text { but } \theta(\sigma)=\theta\left(\rho^{2}\right)=2
$$ and $\theta\left(\sigma \rho^{2}\right)=2 \neq 2 \cdot \alpha$

