- 3. Let G be the subgroup $\{1,-1,i,-i\}$ of the group of non-zero complex numbers under multiplication.
 - (a) Record the multiplication table for G.

-	1	i	-	- [
1	i	ì	-1	-(
ì	ì	-1	-c	1
-1	-1	-i	1	L
-Ľ	-i	1	i	-

(b) In class we found 8 subgroups of the group D_4 . Three of these subgroups had four elements, just like the group G. Does the multiplication table of G look more like the multiplication table of $H = \{ \mathrm{id}, \rho, \rho^2, \rho^3 \}$ or more the multiplication table of $K = \{ \mathrm{id}, \sigma\rho, \rho^2, \sigma\rho^3 \}$. Explain your answer. (I do not need to see a large number of details.)

The above table looks just like								
	1	P	P2	63				
1	i	P	pz	P3				
P	P	p2	P3	1				
Pi	ρ²	f3	-	P				
P3	P3	1	P	p2				

The top grow consists of $1, i, (i)^2, (i)^3$ The bottom grow consists of $1, p, p^2, p^3$

The group K is much different. Every element square to the ideatity