Math 546, Final Exam, Spring 2004

PRINT Your Name: ________ There are 17 problems on 6 pages. The exam is worth 100 points.

If I know your e-mail address, I will e-mail your grade to you. If I don't already know your e-mail address and you want me to know it, then **send me an e-mail**. Otherwise, get your course grade from VIP.

I will post the solutions on my website on Wednesday.

- 1. (5 points) Define "centralizer". Use complete sentences.
- 2. (5 points) Define "normal subgroup". Use complete sentences.
- 3. (6 points) (Yes or No. If yes, PROVE it. If no, give a COUNTEREXAMPLE.) Let a and b be elements of finite order in the group G. Does ab have to have finite order?
- (6 points) Recall that each element of C is a point on the complex plane. Notice that (ℝ^{pos}, ×) is a subgroup of (C \ {0}, ×). Give a geometric description of the left cosets of (ℝ^{pos}, ×) in (C \ {0}, ×).
- 5. (6 points) (Yes or No. If yes, PROVE it. If no, give a COUNTEREXAMPLE.) Let *a* be a fixed element of the group *G*. Consider the function $\rho_a: G \to G$, which is given by $\rho_a(g) = ga$, for all *g* in *G*. Is ρ_a onto?
- 6. (6 points) (Yes or No. If yes, PROVE it. If no, give a COUNTEREXAMPLE.) Let *a* be a fixed element of the group *G*. Consider the function $\rho_a: G \to G$, which is given by $\rho_a(g) = ga$, for all *g* in *G*. Is ρ_a a homomorphism?
- 7. (6 points) (Yes or No. If yes, PROVE it. If no, give a COUNTEREXAMPLE.) Is $\varphi \colon \mathbb{Z}_{10} \to \mathbb{Z}_5$, which is given by $\varphi([n]_{10}) = [n]_5$, a function?
- 8. (6 points) (Yes or No. If yes, PROVE it. If no, give a COUNTEREXAMPLE.) Is $\varphi \colon \mathbb{Z}_5 \to \mathbb{Z}_{10}$, which is given by $\varphi([n]_5) = [n]_{10}$, a function?
- 9. (6 points) Let N be a normal subgroup of the group G, and let $\frac{G}{N}$ be the set of left cosets of N in G. Prove that $\varphi \colon \frac{G}{N} \times \frac{G}{N} \to \frac{G}{N}$, which is given by

$$\varphi(aN, bN) = abN_s$$

is a function.

- 10. (6 points) (Yes or No. If yes, PROVE it. If no, give a COUNTEREXAMPLE.) Let $f: \mathbb{Z} \to \mathbb{Z}$ be a one-to-one and onto function. Suppose $B \subseteq \mathbb{Z}$ with $f(B) \subseteq B$. Is f(B) = B?
- 11. (6 points) What is the order of $([2]_6, [2]_4) + \langle ([3]_6, [2]_4) \rangle$ in $\frac{\mathbb{Z}_6 \times \mathbb{Z}_4}{\langle ([3]_6, [2]_4) \rangle}$? Explain.

- 12. (6 points) Let H be a non-zero subgroup of \mathbb{Z} . Prove that H is cyclic.
- 13. (6 points) Let d be the greatest common divisor of the integers n and m. Prove that there exist integers r and s with rn + sm = d.
- 14. (6 points) List 6 subgroups of the Dihedral group D_4 . No explanation is needed.
- 15. (6 points) Prove that $(\mathbb{R}, +)$ is isomorphic to $(\mathbb{R}^{\text{pos}}, \times)$.
- 16. (6 points) Consider $(\mathbb{Z}, *)$, where n * m = n + m + 1 for all integers n and m. Is $(\mathbb{Z}, *)$ a group? Explain.
- 17. (6 points) S be a set and let B be a subset of S. Define

$$H = \{ \sigma \in \operatorname{Sym}(S) \mid \sigma(b) \in B \text{ for all } b \in B \}.$$

Suppose $S = \{1, 2, 3, 4, 5, 6\}$ and $B = \{1, 3, 5\}$. How many elements does H have? Explain.