Math 546, Final Exam, Spring 2004

PRINT Your Name:
There are 17 problems on 6 pages. The exam is worth 100 points.
If I know your e-mail address, I will e-mail your grade to you. If I don't already know your e-mail address and you want me to know it, then send me an e-mail. Otherwise, get your course grade from VIP.
I will post the solutions on my website on Wednesday.

1. (5 points) Define "centralizer". Use complete sentences.
2. (5 points) Define "normal subgroup". Use complete sentences.
3. (6 points) (Yes or No. If yes, PROVE it. If no, give a COUNTEREXAMPLE.) Let a and b be elements of finite order in the group G. Does $a b$ have to have finite order?
4. (6 points) Recall that each element of \mathbb{C} is a point on the complex plane. Notice that $\left(\mathbb{R}^{\text {pos }}, \times\right)$ is a subgroup of $(\mathbb{C} \backslash\{0\}, \times)$. Give a geometric description of the left cosets of $\left(\mathbb{R}^{\text {pos }}, \times\right)$ in $(\mathbb{C} \backslash\{0\}, \times)$.
5. (6 points) (Yes or No. If yes, PROVE it. If no, give a COUNTEREXAMPLE.) Let a be a fixed element of the group G. Consider the function $\rho_{a}: G \rightarrow G$, which is given by $\rho_{a}(g)=g a$, for all g in G. Is ρ_{a} onto?
6. (6 points) (Yes or No. If yes, PROVE it. If no, give a COUNTEREXAMPLE.) Let a be a fixed element of the group G. Consider the function $\rho_{a}: G \rightarrow G$, which is given by $\rho_{a}(g)=g a$, for all g in G. Is ρ_{a} a homomorphism?
7. (6 points) (Yes or No. If yes, PROVE it. If no, give a COUNTEREXAMPLE.) Is $\varphi: \mathbb{Z}_{10} \rightarrow \mathbb{Z}_{5}$, which is given by $\varphi\left([n]_{10}\right)=[n]_{5}$, a function?
8. (6 points) (Yes or No. If yes, PROVE it. If no, give a COUNTEREXAMPLE.) Is $\varphi: \mathbb{Z}_{5} \rightarrow \mathbb{Z}_{10}$, which is given by $\varphi\left([n]_{5}\right)=[n]_{10}$, a function?
9. (6 points) Let N be a normal subgroup of the group G, and let $\frac{G}{N}$ be the set of left cosets of N in G. Prove that $\varphi: \frac{G}{N} \times \frac{G}{N} \rightarrow \frac{G}{N}$, which is given by

$$
\varphi(a N, b N)=a b N
$$

is a function.
10. (6 points) (Yes or No. If yes, PROVE it. If no, give a COUNTEREXAMPLE.) Let $f: \mathbb{Z} \rightarrow \mathbb{Z}$ be a one-to-one and onto function. Suppose $B \subseteq \mathbb{Z}$ with $f(B) \subseteq B$. Is $f(B)=B$?
11. (6 points) What is the order of $\left([2]_{6},[2]_{4}\right)+\left\langle\left([3]_{6},[2]_{4}\right)>\right.$ in $\frac{\mathbb{Z}_{6} \times \mathbb{Z}_{4}}{\left\langle\left([3]_{6},[2]_{4}\right)\right\rangle}$? Explain.
12. (6 points) Let H be a non-zero subgroup of \mathbb{Z}. Prove that H is cyclic.
13. (6 points) Let d be the greatest common divisor of the integers n and m. Prove that there exist integers r and s with $r n+s m=d$.
14. (6 points) List 6 subgroups of the Dihedral group D_{4}. No explanation is needed.
15. (6 points) Prove that $(\mathbb{R},+)$ is isomorphic to $\left(\mathbb{R}^{\text {pos }}, \times\right)$.
16. (6 points) Consider $(\mathbb{Z}, *)$, where $n * m=n+m+1$ for all integers n and m. Is $(\mathbb{Z}, *)$ a group? Explain.
17. (6 points) S be a set and let B be a subset of S. Define

$$
H=\{\sigma \in \operatorname{Sym}(S) \mid \sigma(b) \in B \text { for all } b \in B\}
$$

Suppose $S=\{1,2,3,4,5,6\}$ and $B=\{1,3,5\}$. How many elements does H have? Explain.

