PRINT Your Name:
There are 7 problems on 5 pages. Problems 1 and 2 are worth 10 points each. Each of the other problems is worth 6 points.

If I know your e-mail address, I will e-mail your grade to you. If I don't already know your e-mail address and you want me to know it, then send me an e-mail.

If you would like, I will leave your exam outside my office after I have graded it. (If you like, I will send you an e-mail when I am finished with it.) You may pick it up any time between then and the next class. Let me know if you are interested.

I will post the solutions on my website tonight after the exam is finished.

1. STATE and PROVE Lagrange's Theorem.

Lagrange's Theorem. If H is a subgroup of the finite group G, then the order of H divides the order of G.

Proof. We show
(a) Every element of G is in some left coset of H in G.
(b) If two left cosets of H in G have any element in common, then these two cosets are equal.
(c) Every left coset of H in G has the same number of elements as H.

Once we have established (a), (b), and (c), then we will have partitioned G into a handful of disjoint subsets and each of the subsets has the same number of elements as H. In other words, we will know that $|G|=r|H|$, where we use $|S|$ to represent the number of elements in the set S and r is the number of left cosets of H in G.

The proof of (a): If g is an element of G, then g is in the left coset $g H$.
The proof of (b): Suppose a and b are elements of G and x is an element of both cosets $a H$ and $b H$. Thus, $x=a h_{1}$ and $x=b h_{2}$ for some h_{1} and h_{2} in H. It follows that $a h_{1}=b h_{2}$; that is, $a=b h_{2} h_{1}^{-1}$. But H is a group so, $h_{2} h_{1}^{-1}$ is an element of H; let this element be called h_{3}. We have $a=b h_{3}$. We now prove that $a H=b H$.
$\subseteq:$ Take an arbitrary element $a h$ from $a H$, for some h in H. We see that $a h=b h_{3} h$, which is in $b H$ because H is a group.
\supseteq : Take an arbitrary element $b h^{\prime}$ from $b H$, for some h^{\prime} in H. We see that $b h^{\prime}=a h_{3}^{-1} h$, which is in $a H$ because H is a group.

The proof of (c): We exhibit a one-to-one correspondence between H and the coset $a H$ for any fixed a in G. Define the function $\varphi: H \rightarrow a H$ by $\varphi(h)=a h$ for each h in H. Notice that every element of $a H$ is in the image of φ. (Indeed, a typical element of $a H$ has the form $a h$ for some h in H, and this element is equal to $\varphi(h)$.) Notice that φ is one-to-one. (Indeed, if h_{1} and h_{2} are elements of H with $\varphi\left(h_{1}\right)=\varphi\left(h_{2}\right)$, then $a h_{1}=a h_{2}$. Multiply by a^{-1} to see that $h_{1}=h_{2}$.)

We have established (a), (b), and (c); therefore, we have completed the proof.
2. Let G be a group and g be an element of G.
(a) Define the center, $Z(G)$, of G.
(b) Define the centralizer, $C_{G}(g)$, of g in G.
(c) Is it always true that $C_{G}(g) \subseteq Z(G)$? If yes, prove it. If no, give a counterexample.
(d) Is it always true that $Z(G) \subseteq C_{G}(g)$? If yes, prove it. If no, give a counterexample.
(a) The center of the group G is the set of all elements in G which commute with every element in G.
(b) The centralizer of the element g in the group G is the set of all elements in G which commute with g.
(c) No. Consider the group $G=D_{3}$ and the element $g=\sigma$ of G. In this case, $C_{g}(G) \nsubseteq Z(G)$. Indeed, the center of D_{3} is $\{\mathrm{id}\}$ because,

$$
\begin{equation*}
\sigma \rho \neq \rho \sigma \tag{1}
\end{equation*}
$$

since the right side is $\sigma \rho^{2}$;

$$
\begin{equation*}
\sigma \rho^{2} \neq \rho^{2} \sigma \tag{2}
\end{equation*}
$$

since the right side is $\sigma \rho$;

$$
\begin{equation*}
\sigma(\sigma \rho) \neq(\sigma \rho) \sigma \tag{3}
\end{equation*}
$$

since the left side is ρ and the right side is ρ^{2}; and

$$
\begin{equation*}
\sigma\left(\sigma \rho^{2}\right) \neq\left(\sigma \rho^{2}\right) \sigma \tag{4}
\end{equation*}
$$

since the left side is ρ^{2} and the right side is ρ. Line (1) tells us that $\sigma \notin Z\left(D_{3}\right)$ and $\rho \notin Z\left(D_{3}\right)$. Line (2) tells us that $\rho^{2} \notin Z\left(D_{3}\right)$. Line (3) tells us that $\sigma \rho \notin Z\left(D_{3}\right)$. Line (4) tells us that $\sigma \rho^{2} \notin Z\left(D_{3}\right)$. On the other hand, $\sigma \in C_{G}(g)$ because σ commutes with $g=\sigma$.
(d) Yes. It is always true that $Z(G) \subseteq C_{G}(g)$. If x is in $Z(G)$, then x commutes with every element of G; hence, x commutes with the element g of G and $x \in C_{G}(g)$.
3. (Yes or No. If yes, PROVE it. If no, give a COUNTEREXAMPLE.) Let H and K be subgroups of the group G with $H \neq\{i d\}$ and $K \neq\{\mathbf{i d}\}$. Is it always true that $H \cap K \neq\{\mathbf{i d}\}$?
No. Let G be the subgroup $\left\{\mathrm{id}, \sigma, \rho^{2}, \sigma \rho^{2}\right\}$ of $D_{4} ; H$ be the subgroup $\{\mathrm{id}, \sigma\}$ of G, and K be the subgroup $\left\{\mathrm{id}, \rho^{2}\right\}$ of G. It is clear that $H \neq\{\mathrm{id}\}$ and $K \neq\{\mathrm{id}\}$. It is also clear that $H \cap K=\{\mathrm{id}\}$.
4. (Yes or No. If yes, PROVE it. If no, give a COUNTEREXAMPLE.) Let G be a group in which every proper subgroup is cyclic. Does the group G have to be cyclic?

No. Let G be D_{3}. The proper subgroups of G have order 1,2 , or 3 by Lagrange's Theorem. The only subgroup of order 1 is $\{\mathrm{id}\}$ and this group is cyclic. Every group of prime order is cyclic by the first application of Lagrange's Theorem. So, every proper subgroup of D_{3} is cyclic, but D_{3} is not cyclic.
5. (Yes or No. If yes, PROVE it. If no, give a COUNTEREXAMPLE.) Let G be a group and let S be the subset $S=\left\{x \in G \mid x^{2}=\right.$ id $\}$ of G. Is S always a subgroup of G ?
No. Let G be D_{3}. The set S is equal to $\{\operatorname{id}, \sigma, \sigma \rho, \sigma \rho\}$. Lagrange's Theorem tells us that S is not a subgroup of G because S has 4 elements, G has 6 elements and 4 does not divide into 6 evenly.
6. (Yes or No. If yes, PROVE it. If no, give a COUNTEREXAMPLE.) Let G be an abelian group and let S be the subset

$$
S=\left\{x \in G \mid x^{2}=\mathbf{i d}\right\}
$$

of G. Is S always a subgroup of G ?
yes. The set S is non-empty because the identity element of the group G is in S. We establish closure. Take x and y from S. Observe that $(x y)^{2}=x y x y=x^{2} y^{2}$ because G is abelian and $x^{2} y^{2}=\operatorname{id}$ because x and y are in S; and therefore, $x y \in S$. We establish the inverse axiom. Take $x \in S$. Let x^{-1} be the name of x 's inverse in G. We must show that x^{-1} is also in S. We know $x^{2}=i d$. Multiply both side of the equation by $x^{-1} x^{-1}$ to see that $\mathrm{id}=x^{-1} x^{-1}$; and therefore, $x^{-1} \in S$.
7. List the left cosets of the subgroup $H=\left\{\mathbf{i d}, \rho, \rho^{2}, \rho^{3}\right\}$ in the group $G=D_{4}$. I do not need to see many details.
The left cosets of the subgroup $H=\left\{\mathrm{id}, \rho, \rho^{2}, \rho^{3}\right\}$ in the group $G=D_{4}$ are

$$
\operatorname{id} H=\left\{\operatorname{id}, \rho, \rho^{2}, \rho^{3}\right\} \quad \text { and } \quad \sigma H=\left\{\sigma, \sigma \rho, \sigma \rho^{2}, \sigma \rho^{3}\right\} .
$$

