PRINT Your Name:

There are 7 problems on 5 pages. Problems 1 and 2 are worth 10 points each. Each of the other problems is worth 6 points.

If I know your e-mail address, I will e-mail your grade to you. If I don't already know your e-mail address and you want me to know it, then **send me an e-mail**.

If you would like, I will leave your exam outside my office after I have graded it. (If you like, I will send you an e-mail when I am finished with it.) You may pick it up any time between then and the next class. Let me know if you are interested.

I will post the solutions on my website tonight after the exam is finished.

1. STATE and PROVE Lagrange's Theorem.

Lagrange's Theorem. If H is a subgroup of the finite group G, then the order of H divides the order of G.

Proof. We show

- (a) Every element of G is in some left cos t of H in G.
- (b) If two left cosets of H in G have any element in common, then these two cosets are equal.
- (c) Every left coset of H in G has the same number of elements as H.

Once we have established (a), (b), and (c), then we will have partitioned G into a handful of disjoint subsets and each of the subsets has the same number of elements as H. In other words, we will know that |G| = r|H|, where we use |S| to represent the number of elements in the set S and r is the number of left cosets of H in G.

The proof of (a): If g is an element of G, then g is in the left cos gH.

The proof of (b): Suppose a and b are elements of G and x is an element of both cosets aH and bH. Thus, $x = ah_1$ and $x = bh_2$ for some h_1 and h_2 in H. It follows that $ah_1 = bh_2$; that is, $a = bh_2h_1^{-1}$. But H is a group so, $h_2h_1^{-1}$ is an element of H; let this element be called h_3 . We have $a = bh_3$. We now prove that aH = bH.

 \subseteq : Take an arbitrary element ah from aH, for some h in H. We see that $ah = bh_3h$, which is in bH because H is a group.

 \supseteq : Take an arbitrary element bh' from bH, for some h' in H. We see that $bh' = ah_3^{-1}h$, which is in aH because H is a group.

The proof of (c): We exhibit a one-to-one correspondence between H and the coset aH for any fixed a in G. Define the function $\varphi: H \to aH$ by $\varphi(h) = ah$ for each h in H. Notice that every element of aH is in the image of φ . (Indeed, a typical element of aH has the form ah for some h in H, and this element is equal to $\varphi(h)$.) Notice that φ is one-to-one. (Indeed, if h_1 and h_2 are elements of H with $\varphi(h_1) = \varphi(h_2)$, then $ah_1 = ah_2$. Multiply by a^{-1} to see that $h_1 = h_2$.)

We have established (a), (b), and (c); therefore, we have completed the proof. \Box

- 2. Let G be a group and g be an element of G.
 - (a) Define the center, Z(G), of G.
 - (b) Define the centralizer, $C_G(g)$, of g in G.
 - (c) Is it always true that $C_G(g) \subseteq Z(G)$? If yes, prove it. If no, give a counterexample.
 - (d) Is it always true that $Z(G) \subseteq C_G(g)$? If yes, prove it. If no, give a counterexample.
 - (a) The *center* of the group G is the set of all elements in G which commute with every element in G.
 - (b) The *centralizer* of the element g in the group G is the set of all elements in G which commute with g.
 - (c) No. Consider the group $G = D_3$ and the element $g = \sigma$ of G. In this case, $C_g(G) \not\subseteq Z(G)$. Indeed, the center of D_3 is {id} because,

(1)
$$\sigma \rho \neq \rho \sigma$$

since the right side is $\sigma \rho^2$;

(2)
$$\sigma \rho^2 \neq \rho^2 \sigma$$

since the right side is $\sigma \rho$;

(3)
$$\sigma(\sigma\rho) \neq (\sigma\rho)\sigma$$

since the left side is ρ and the right side is ρ^2 ; and

(4)
$$\sigma(\sigma\rho^2) \neq (\sigma\rho^2)\sigma$$

since the left side is ρ^2 and the right side is ρ . Line (1) tells us that $\sigma \notin Z(D_3)$ and $\rho \notin Z(D_3)$. Line (2) tells us that $\rho^2 \notin Z(D_3)$. Line (3) tells us that $\sigma \rho \notin Z(D_3)$. Line (4) tells us that $\sigma \rho^2 \notin Z(D_3)$. On the other hand, $\sigma \in C_G(g)$ because σ commutes with $g = \sigma$.

- (d) Yes. It is always true that $Z(G) \subseteq C_G(g)$. If x is in Z(G), then x commutes with every element of G; hence, x commutes with the element g of G and $x \in C_G(g)$.
- 3. (Yes or No. If yes, PROVE it. If no, give a COUNTEREXAMPLE.) Let H and K be subgroups of the group G with $H \neq \{id\}$ and $K \neq \{id\}$. Is it always true that $H \cap K \neq \{id\}$?

No. Let G be the subgroup $\{\mathrm{id}, \sigma, \rho^2, \sigma\rho^2\}$ of D_4 ; H be the subgroup $\{\mathrm{id}, \sigma\}$ of G, and K be the subgroup $\{\mathrm{id}, \rho^2\}$ of G. It is clear that $H \neq \{\mathrm{id}\}$ and $K \neq \{\mathrm{id}\}$. It is also clear that $H \cap K = \{\mathrm{id}\}$.

4. (Yes or No. If yes, PROVE it. If no, give a COUNTEREXAMPLE.) Let G be a group in which every proper subgroup is cyclic. Does the group G have to be cyclic?

No. Let G be D_3 . The proper subgroups of G have order 1, 2, or 3 by Lagrange's Theorem. The only subgroup of order 1 is {id} and this group is cyclic. Every group of prime order is cyclic by the first application of Lagrange's Theorem. So, every proper subgroup of D_3 is cyclic, but D_3 is not cyclic.

5. (Yes or No. If yes, PROVE it. If no, give a COUNTEREXAMPLE.) Let G be a group and let S be the subset $S = \{x \in G \mid x^2 = id\}$ of G. Is S always a subgroup of G?

No. Let G be D_3 . The set S is equal to $\{id, \sigma, \sigma\rho, \sigma\rho\}$. Lagrange's Theorem tells us that S is not a subgroup of G because S has 4 elements, G has 6 elements and 4 does not divide into 6 evenly.

6. (Yes or No. If yes, PROVE it. If no, give a COUNTEREXAMPLE.) Let G be an abelian group and let S be the subset

$$S = \{ x \in G \mid x^2 = \mathbf{id} \}$$

of G. Is S always a subgroup of G?

yes. The set S is **non-empty** because the identity element of the group G is in S. We establish **closure**. Take x and y from S. Observe that $(xy)^2 = xyxy = x^2y^2$ because G is abelian and $x^2y^2 = id$ because x and y are in S; and therefore, $xy \in S$. We establish the **inverse** axiom. Take $x \in S$. Let x^{-1} be the name of x's inverse in G. We must show that x^{-1} is also in S. We know $x^2 = id$. Multiply both side of the equation by $x^{-1}x^{-1}$ to see that $id = x^{-1}x^{-1}$; and therefore, $x^{-1} \in S$.

7. List the left cosets of the subgroup $H = {id, \rho, \rho^2, \rho^3}$ in the group $G = D_4$. I do not need to see many details.

The left cosets of the subgroup $H = \{id, \rho, \rho^2, \rho^3\}$ in the group $G = D_4$ are

$$\mathrm{id} H = \{\mathrm{id},
ho,
ho^2,
ho^3\} \quad \mathrm{and} \quad \sigma H = \{\sigma, \sigma
ho, \sigma
ho^2, \sigma
ho^3\}.$$