
PRINT Your Name:
There are 7 problems on 5 pages. Problems 1 and 2 are worth 10 points each. Each
of the other problems is worth 6 points.

If I know your e-mail address, I will e-mail your grade to you. If I don’t already
know your e-mail address and you want me to know it, then send me an e-mail.

If you would like, I will leave your exam outside my office after I have graded it. (If
you like, I will send you an e-mail when I am finished with it.) You may pick it up
any time between then and the next class. Let me know if you are interested.

I will post the solutions on my website tonight after the exam is finished.

1. STATE and PROVE Lagrange’s Theorem.

Lagrange’s Theorem. If H is a subgroup of the finite group G , then the order
of H divides the order of G .

Proof. We show
(a) Every element of G is in some left coset of H in G .
(b) If two left cosets of H in G have any element in common, then these two

cosets are equal.
(c) Every left coset of H in G has the same number of elements as H .
Once we have established (a), (b), and (c), then we will have partitioned G

into a handful of disjoint subsets and each of the subsets has the same number
of elements as H . In other words, we will know that |G| = r|H| , where we use
|S| to represent the number of elements in the set S and r is the number of left
cosets of H in G .

The proof of (a): If g is an element of G , then g is in the left coset gH .

The proof of (b): Suppose a and b are elements of G and x is an element of
both cosets aH and bH . Thus, x = ah1 and x = bh2 for some h1 and h2 in
H . It follows that ah1 = bh2 ; that is, a = bh2h

−1
1 . But H is a group so, h2h

−1
1

is an element of H ; let this element be called h3 . We have a = bh3 . We now
prove that aH = bH .
⊆ : Take an arbitrary element ah from aH , for some h in H . We see that
ah = bh3h , which is in bH because H is a group.
⊇ : Take an arbitrary element bh′ from bH , for some h′ in H . We see that
bh′ = ah−1

3 h , which is in aH because H is a group.

The proof of (c): We exhibit a one-to-one correspondence between H and the
coset aH for any fixed a in G . Define the function ϕ : H → aH by ϕ(h) = ah
for each h in H . Notice that every element of aH is in the image of ϕ . (Indeed,
a typical element of aH has the form ah for some h in H , and this element
is equal to ϕ(h) .) Notice that ϕ is one-to-one. (Indeed, if h1 and h2 are
elements of H with ϕ(h1) = ϕ(h2) , then ah1 = ah2 . Multiply by a−1 to see
that h1 = h2 .)

We have established (a), (b), and (c); therefore, we have completed the proof. �
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2. Let G be a group and g be an element of G .
(a) Define the center, Z(G) , of G .
(b) Define the centralizer, CG(g) , of g in G .
(c) Is it always true that CG(g) ⊆ Z(G) ? If yes, prove it. If no, give a

counterexample.
(d) Is it always true that Z(G) ⊆ CG(g) ? If yes, prove it. If no, give a
counterexample.

(a) The center of the group G is the set of all elements in G which commute
with every element in G .

(b) The centralizer of the element g in the group G is the set of all elements
in G which commute with g .

(c) No. Consider the group G = D3 and the element g = σ of G . In this
case, Cg(G) 6⊆ Z(G) . Indeed, the center of D3 is {id} because,

(1) σρ 6= ρσ

since the right side is σρ2 ;

(2) σρ2 6= ρ2σ

since the right side is σρ ;

(3) σ(σρ) 6= (σρ)σ

since the left side is ρ and the right side is ρ2 ; and

(4) σ(σρ2) 6= (σρ2)σ

since the left side is ρ2 and the right side is ρ . Line (1) tells us that
σ /∈ Z(D3) and ρ /∈ Z(D3) . Line (2) tells us that ρ2 /∈ Z(D3) . Line (3)
tells us that σρ /∈ Z(D3) . Line (4) tells us that σρ2 /∈ Z(D3) . On the
other hand, σ ∈ CG(g) because σ commutes with g = σ .

(d) Yes. It is always true that Z(G) ⊆ CG(g) . If x is in Z(G) , then x
commutes with every element of G ; hence, x commutes with the element
g of G and x ∈ CG(g) .

3. (Yes or No. If yes, PROVE it. If no, give a COUNTEREXAMPLE.)
Let H and K be subgroups of the group G with H 6= {id} and
K 6= {id} . Is it always true that H ∩ K 6= {id} ?

No. Let G be the subgroup {id, σ, ρ2, σρ2} of D4 ; H be the subgroup {id, σ}
of G , and K be the subgroup {id, ρ2} of G . It is clear that H 6= {id} and
K 6= {id} . It is also clear that H ∩ K = {id} .

4. (Yes or No. If yes, PROVE it. If no, give a COUNTEREXAMPLE.)
Let G be a group in which every proper subgroup is cyclic. Does the
group G have to be cyclic?

No. Let G be D3 . The proper subgroups of G have order 1 , 2 , or 3 by
Lagrange’s Theorem. The only subgroup of order 1 is {id} and this group is
cyclic. Every group of prime order is cyclic by the first application of Lagrange’s
Theorem. So, every proper subgroup of D3 is cyclic, but D3 is not cyclic.
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5. (Yes or No. If yes, PROVE it. If no, give a COUNTEREXAMPLE.)
Let G be a group and let S be the subset S = {x ∈ G | x2 = id} of G .
Is S always a subgroup of G ?

No. Let G be D3 . The set S is equal to {id, σ, σρ, σρ} . Lagrange’s Theorem
tells us that S is not a subgroup of G because S has 4 elements, G has 6
elements and 4 does not divide into 6 evenly.

6. (Yes or No. If yes, PROVE it. If no, give a COUNTEREXAMPLE.)
Let G be an abelian group and let S be the subset

S = {x ∈ G | x2 = id}

of G . Is S always a subgroup of G ?

yes. The set S is non-empty because the identity element of the group G is in S .
We establish closure. Take x and y from S . Observe that (xy)2 = xyxy = x2y2

because G is abelian and x2y2 = id because x and y are in S ; and therefore,
xy ∈ S . We establish the inverse axiom. Take x ∈ S . Let x−1 be the name
of x ’s inverse in G . We must show that x−1 is also in S . We know x2 = id .
Multiply both side of the equation by x−1x−1 to see that id = x−1x−1 ; and
therefore, x−1 ∈ S .

7. List the left cosets of the subgroup H = {id, ρ, ρ2, ρ3} in the group
G = D4 . I do not need to see many details.

The left cosets of the subgroup H = {id, ρ, ρ2, ρ3} in the group G = D4 are

idH = {id, ρ, ρ2, ρ3} and σH = {σ, σρ, σρ2, σρ3}.


