Math 546 Exam 2 Spring 2004

PRINT Your Name:

There are 7 problems on 5 pages. Problems 1 and 2 are worth 10 points each. Each of the other problems is worth 6 points.

If I know your e-mail address, I will e-mail your grade to you. If I don't already know your e-mail address and you want me to know it, then **send me an e-mail**.

If you would like, I will leave your exam outside my office after I have graded it. (If you like, I will send you an e-mail when I am finished with it.) You may pick it up any time between then and the next class. Let me know if you are interested.

I will post the solutions on my website tonight after the exam is finished.

- 1. STATE and PROVE Lagrange's Theorem.
- 2. Let G be a group and g be an element of G.
 - (a) Define the *center*, Z(G), of G.
 - (b) Define the *centralizer*, $C_G(g)$, of g in G.
 - (c) Is it always true that $C_G(g) \subseteq Z(G)$? If yes, prove it. If no, give a counterexample.
 - (d) Is it always true that $Z(G) \subseteq C_G(g)$? If yes, prove it. If no, give a counterexample.
- 3. (Yes or No. If yes, PROVE it. If no, give a COUNTEREXAMPLE.) Let H and K be subgroups of the group G with $H \neq \{id\}$ and $K \neq \{id\}$. Is it always true that $H \cap K \neq \{id\}$?
- 4. (Yes or No. If yes, PROVE it. If no, give a COUNTEREXAMPLE.) Let G be a group in which every proper subgroup is cyclic. Does the group G have to be cyclic?
- 5. (Yes or No. If yes, PROVE it. If no, give a COUNTEREXAMPLE.) Let G be a group and let S be the subset $S = \{x \in G \mid x^2 = id\}$ of G. Is S always a subgroup of G?
- 6. (Yes or No. If yes, PROVE it. If no, give a COUNTEREXAMPLE.) Let G be an abelian group and let S be the subset $S = \{x \in G \mid x^2 = id\}$ of G. Is S always a subgroup of G?
- 7. List the left cosets of the subgroup $H = \{id, \rho, \rho^2, \rho^3\}$ in the group $G = D_4$. I do not need to see many details.