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3. Let m and n be positive integers. Let H be the set of all linear combinations [f’%
an + bm, where a and b are integers. It can be shown that there exists
a positive element h € H, so that every element of H is a multiple of h.
PROVE that h is the greatest common divisor of m and n. (I am not asking
you to prove the existence of h. I am saying, “Suppose h exists. Now prove
that h is the g.c.d”.) Loy d= g e (van ). 5 0
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4. Give an example of a group G and elements a and b in G of finite order
with the order of ab not equal to the order of a times the order of b.

G: Sy gGg=01) b=C(3) al=aaz) = (13z2)
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