\qquad

No calculators, cell phones, computers, notes, etc.

Make your work correct, complete and coherent.

Please take a picture of your quiz (for your records) just before you turn the quiz in. I will e-mail your grade and my comments to you. I will keep your quiz.

The quiz is worth 5 points. The solutions will be posted on my website later today.
Quiz 1, August 25, 2022
Let $S=\mathbb{R} \backslash\{-1\}$. Define $*$ by $a * b=a+b+a b$, for a and b in S. Prove that $(S, *)$ is a group.

Answer:

- We first show that $(S, *)$ is closed. Take a and b in S. It is clear that $a * b$ is a real number. We must show that $a * b=-1$. We agrue by contradiction. If $a * b=-1$, then $a+b+a b=-1$; so $a b+a+b+1=0$. In other words, $(a+1)(b+1)=0$ and $a=-1$ or $b=-1$. Neither of these outcomes is possible. Thus $a * b \neq-1$ and $a * b$ is indeed in S.
- We notice that $*$ commutes!
- Observe that 0 is the identity element of $(S, *)$ because

$$
a * 0=a+0+a(0)=a .
$$

We need not check that $0 * a=a$ because we already observed that $a * b=b * a$ for all a and b in S.

- We observe that $*$ associates. Indeed, if a, b, c are in S, then

$$
\begin{aligned}
a *(b * c)=a *(b+c+b c)= & a+(b+c+b c)+a(b+c+b c)=(a+b+a b)+c+(a+b+a b) c \\
& =a * b+c+(a * b) c=(a * b) * c .
\end{aligned}
$$

- Let a be an element of S. We observe that the inverse of a is $\frac{-a}{a+1}$. First of all, we notice that the proposed inverse is a Real number because $a \neq-1$. We also notice that $\frac{-a}{a+1} \neq-1$ because $0 \neq-1$. Thus, the proposed inverse is an actual element of $(S, *)$. Finally, we verify that

$$
a *\left(\frac{-a}{a+1}\right)=a+\left(\frac{-a}{a+1}\right)+a\left(\frac{-a}{a+1}\right)=\frac{a(a+1)-a-a^{2}}{a+1}=\frac{0}{a+1}=0 .
$$

