No calculators, cell phones, computers, notes, etc.

Make your work correct, complete and coherent.

Please take a picture of your quiz (for your records) just before you turn the quiz in. I will e-mail your grade and my comments to you. I will keep your quiz.

The quiz is worth 5 points. The solutions will be posted on my website later today.

Quiz 1, August 25, 2022

Let $S = \mathbb{R} \setminus \{-1\}$. Define * by a * b = a + b + ab, for a and b in S. Prove that (S, *) is a group.

Answer:

• We first show that (S, *) is closed. Take *a* and *b* in *S*. It is clear that a * b is a real number. We must show that a * b = -1. We agrue by contradiction. If a * b = -1, then a + b + ab = -1; so ab + a + b + 1 = 0. In other words, (a + 1)(b + 1) = 0 and a = -1 or b = -1. Neither of these outcomes is possible. Thus $a * b \neq -1$ and a * b is indeed in *S*.

- We notice that * commutes!
- Observe that 0 is the identity element of (S, *) because

$$a * 0 = a + 0 + a(0) = a.$$

We need not check that 0 * a = a because we already observed that a * b = b * a for all a and b in S.

• We observe that * associates. Indeed, if *a*, *b*, *c* are in *S*, then

$$a * (b * c) = a * (b + c + bc) = a + (b + c + bc) + a(b + c + bc) = (a + b + ab) + c + (a + b + ab)c$$
$$= a * b + c + (a * b)c = (a * b) * c.$$

• Let *a* be an element of *S*. We observe that the inverse of *a* is $\frac{-a}{a+1}$. First of all, we notice that the proposed inverse is a Real number because $a \neq -1$. We also notice that $\frac{-a}{a+1} \neq -1$ because $0 \neq -1$. Thus, the proposed inverse is an actual element of (S, *). Finally, we verify that

$$a * \left(\frac{-a}{a+1}\right) = a + \left(\frac{-a}{a+1}\right) + a\left(\frac{-a}{a+1}\right) = \frac{a(a+1) - a - a^2}{a+1} = \frac{0}{a+1} = 0$$