Math 546, Exam 4, Fall 2004, Solutions

The exam is worth 50 points.
Write your answers as legibly as you can on the blank sheets of paper provided. Use only one side of each sheet. Take enough space for each problem. Turn in your solutions in the order: problem 1, problem 2, ... ; although, by using enough paper, you can do the problems in any order that suits you.

If I know your e-mail address, I will e-mail your grade to you. If I don't already know your e-mail address and you want me to know it, then send me an e-mail.
I will leave your exam outside my office TOMORROW by about 6PM, you may pick it up any time between then and the next class.
I will post the solutions on my website at about 4:00 PM today.

1. (7 points) STATE and PROVE the Chinese Remainder Theorem.

The Chinese Remainder Theorem. Suppose m and n are relatively prime non-zero integers. Prove that the groups $\frac{\mathbb{Z}}{m n \mathbb{Z}}$ and $\frac{\mathbb{Z}}{m \mathbb{Z}} \times \frac{\mathbb{Z}}{n \mathbb{Z}}$ are isomorphic.

Define $\varphi: \mathbb{Z} \rightarrow \frac{\mathbb{Z}}{m \mathbb{Z}} \times \frac{\mathbb{Z}}{n \mathbb{Z}}$ by $\varphi(a)=(a+m \mathbb{Z}, a+n \mathbb{Z})$ for all $a \in \mathbb{Z}$. We show that φ is a group homomorphism. Take a and b in \mathbb{Z}. We see that
$\varphi(a+b)=(a+b+m \mathbb{Z}, a+b+n \mathbb{Z})=(a+m \mathbb{Z}, a+n \mathbb{Z})+(b+m \mathbb{Z}, b+n \mathbb{Z})=\varphi(a)+\varphi(b)$.
To show that φ is onto, we use the Lemma from Number Theory which says that the greatest common divisor of any two non-zero integers is equal to a linear combination (with integer coefficients) of the two integers. In particular, there exist integers r and s with

$$
\begin{equation*}
r m+s n=1 \tag{*}
\end{equation*}
$$

Let $(a+m \mathbb{Z}, b+n \mathbb{Z})$ be an arbitrary element of $\frac{\mathbb{Z}}{m \mathbb{Z}} \times \frac{\mathbb{Z}}{n \mathbb{Z}}$. Observe that $\varphi(a s n+b r m)=(a+m \mathbb{Z}, b+n \mathbb{Z})$. It is clear that $m n \mathbb{Z}$ is contained in the kernel of φ. We show that $\operatorname{ker} \varphi \subseteq m n \mathbb{Z}$. Take $a \in \operatorname{ker} \varphi$. It is clear that $a \in n \mathbb{Z}$ and $a \in m \mathbb{Z}$. Multiply (*) by a to see that $a \in m n \mathbb{Z}$. The First Isomorphism Theorem says that $\frac{\mathbb{Z}}{\operatorname{ker} \varphi}$ is isomorphic to $\operatorname{im} \varphi$. In other words, $\frac{\mathbb{Z}}{m n \mathbb{Z}}$ is isomorphic to $\frac{\mathbb{Z}}{m \mathbb{Z}} \times \frac{\mathbb{Z}}{n \mathbb{Z}}$.

2. (8 points) STATE and PROVE the First Isomorphism Theorem.

The First Isomorphism Theorem. If $\varphi: G \rightarrow G^{\prime}$ is a group homomorphism, then $\bar{\varphi}: \frac{G}{\operatorname{ker} \varphi} \rightarrow \operatorname{im} \varphi$, which is given by $\bar{\varphi}(g \operatorname{ker} \varphi)=\varphi(g)$, is a group isomorphism.

We first observe that $\bar{\varphi}$ IS A WELL-DEfined function. Suppose g_{1} and g_{2} are in G and $g_{1} \operatorname{ker} \varphi$ and $g_{2} \operatorname{ker} \varphi$ are equal cosets. It follows that $g_{1}=g_{2} k$ for some $k \in \operatorname{ker} \varphi$; and therefore, $\varphi\left(g_{1}\right)=\varphi\left(g_{2} k\right)=\varphi\left(g_{2}\right) \varphi(k)=\varphi\left(g_{2}\right) \mathrm{id}=\varphi\left(g_{2}\right)$. We see that $\bar{\varphi}\left(g_{1} \operatorname{ker} \varphi\right)=\bar{\varphi}\left(g_{2} \operatorname{ker} \varphi\right)$, as we desired.

We observe that $\bar{\varphi}$ is a homomorphism. If g_{1} and g_{2} are in G, then

$$
\bar{\varphi}\left(g_{1} \operatorname{ker} \varphi\right) \bar{\varphi}\left(g_{2} \operatorname{ker} \varphi\right)=\varphi\left(g_{1}\right) \varphi\left(g_{2}\right)=\varphi\left(g_{1} g_{2}\right)=\bar{\varphi}\left(g_{1} g_{2} \operatorname{ker} \varphi\right) .
$$

We observe that $\bar{\varphi}$ is onto. Take an arbitrary element g^{\prime} of the target of $\bar{\varphi}$, which is $\operatorname{im} \varphi$. It follows that $g^{\prime}=\varphi\left(g_{1}\right)$ for some $g_{1} \in G_{1}$; and therefore, $g^{\prime}=\bar{\varphi}\left(g_{1} \operatorname{ker} \varphi\right)$.

We observe that $\bar{\varphi}$ IS ONE-TO-ONE. Take g_{1} and g_{2} in G_{1} with $\bar{\varphi}\left(g_{1} \operatorname{ker} \varphi\right)=\bar{\varphi}\left(g_{2} \operatorname{ker} \varphi\right)$. It follows that $\varphi\left(g_{1}\right)=\varphi\left(g_{2}\right) ;$ so, $\varphi\left(g_{1} g_{2}^{-1}\right)=\mathrm{id}$. Thus, $g_{1} g_{2}^{-1} \in \operatorname{ker} \varphi$ and the cosets $g_{1} \operatorname{ker} \varphi$ and $g_{2} \operatorname{ker} \varphi$ are equal.
3. (7 points) Are the groups $\frac{\mathbb{Z}}{6 \mathbb{Z}} \times \frac{\mathbb{Z}}{5 \mathbb{Z}}$ and $\frac{\mathbb{Z}}{2 \mathbb{Z}} \times \frac{\mathbb{Z}}{15 \mathbb{Z}}$ isomorphic? PROVE your answer.

YES. According to the Chinese Remainder Theorem each group is isomorphic to $\frac{\mathbb{Z}}{30 \mathbb{Z}}$.
4. (7 points) Are the groups $\frac{\mathbb{Z}}{4 \mathbb{Z}} \times \frac{\mathbb{Z}}{4 \mathbb{Z}}$ and $\frac{\mathbb{Z}}{4 \mathbb{Z}} \times \frac{\mathbb{Z}}{2 \mathbb{Z}} \times \frac{\mathbb{Z}}{2 \mathbb{Z}}$ isomorphic? PROVE your answer.

NO. The group on the left has 12 elements of order 4,3 elements of order 2, and 1 element of order 1 . The group on the right has 8 elements of order 4, 7 elements of order 2, and 1 element of order 1. Every group isomorphism induces bijection between the elements of order ℓ in the domain and the elements of order ℓ in the target for all non-negative integers ℓ.
5. (7 points) Are the groups $(\mathbb{R},+)$ and ($\mathbb{R}^{\text {pos }}, \times$) isomorphic? PROVE your answer. (I am using $\mathbb{R}^{\text {pos }}$ to represent the set of positive real numbers.)

YES. Define $\phi: \mathbb{R} \rightarrow \mathbb{R}^{\text {pos }}$ by $\phi(a)=10^{a}$. Observe that

$$
\phi(a+b)=10^{a+b}=10^{a} 10^{b}=\phi(a) \phi(b) .
$$

The map ϕ is onto because if $r \in \mathbb{R}^{\text {pos }}$, then $\log _{10} r \in \mathbb{R}$ and $\phi\left(\log _{10} r\right)=r$. The map ϕ is one-to-one, because if a and b are in \mathbb{R} with $\phi(a)=\phi(b)$, then $10^{a}=10^{b}$ and we may apply $\log _{10}$ to both sides to see that $a=b$.
6. (7 points) Let $\phi: G_{1} \rightarrow G_{2}$ and $\theta: G_{2} \rightarrow G_{3}$ be group homomorphisms. Prove that $\theta \circ \phi$ is a group homomorphism.

Take g and g^{\prime} in G_{1}. Observe that

$$
(\theta \circ \phi)\left(g g^{\prime}\right)=\theta\left(\phi\left(g g^{\prime}\right)\right)=\theta\left(\phi(g) \phi\left(g^{\prime}\right)\right)=\theta(\phi(g)) \theta\left(\phi\left(g^{\prime}\right)\right)=(\theta \circ \phi)(g)(\theta \circ \phi)\left(g^{\prime}\right) .
$$

7. (7 points) Suppose that S and T are sets and $\phi: S \rightarrow T$ and $\theta: T \rightarrow S$ are functions with $\theta \circ \phi$ equal to the identity function on S.
(a) Does ϕ have to be one-to-one? PROVE or give a COUNTEREXAMPLE.

YES. Take s and s^{\prime} in S with $\phi(s)=\phi\left(s^{\prime}\right)$. Apply θ to each side to get:

$$
s=\theta(\phi(s))=\theta\left(\phi\left(s^{\prime}\right)\right)=s^{\prime}
$$

(b) Does θ have to be onto? PROVE or give a COUNTEREXAMPLE.

YES. Take $s \in S$. The hypothesis tells us that $\phi(s)$ is an element of T and $\theta(\phi(s))=s$.

