Math 546, Exam 2, Fall, 2004

The exam is worth 50 points.
Write your answers as legibly as you can on the blank sheets of paper provided. Use only one side of each sheet. Take enough space for each problem. Turn in your solutions in the order: problem 1, problem 2, ... ; although, by using enough paper, you can do the problems in any order that suits you.

If I know your e-mail address, I will e-mail your grade to you. If I don't already know your e-mail address and you want me to know it, then send me an e-mail.

I will leave your exam outside my office TOMORROW by about 5PM, you may pick it up any time between then and the next class.

I will post the solutions on my website at about 4:00 PM today.

1. (6 points) Define "subgroup". Use complete sentences.
2. (6 points) Define the "center of a group". Use complete sentences.
3. (6 points) STATE Lagrange's Theorem.
4. (7 points) Let G be a finite group with an even number of elements. Prove that there must exist an element $a \in G$ with $a \neq \mathrm{id}$, but $a^{2}=\mathrm{id}$.
5. (7 points) Give an example of a finite group G and a proper subgroup H of G, with H not a cyclic group.
6. (6 points) Let G be a group of order $p q$ where p and q are prime numbers. Prove that every proper subgroup of G is cyclic.
7. (6 points) Let g be an element of the group G. Suppose that G has order n. Prove that $g^{n}=\mathrm{id}$.
8. (6 points) (6 points) Let H be a subgroup of a group. Suppose that $g^{-1} h g \in H$ for all $g \in G$ and $h \in H$. Fix an element $g \in G$. Prove that $g H=H g$, where $g H$ is the LEFT coset

$$
g H=\{g h \mid h \in H\}
$$

and $H g$ is the RIGHT coset

$$
H g=\{h g \mid h \in H\} .
$$

