Math 546, Exam 1, Fall, 2004 Solutions

The exam is worth 50 points.
Write your answers as legibly as you can on the blank sheets of paper provided. Use only one side of each sheet. Take enough space for each problem. Turn in your solutions in the order: problem 1, problem 2, ... ; although, by using enough paper, you can do the problems in any order that suits you.

If I know your e-mail address, I will e-mail your grade to you. If I don't already know your e-mail address and you want me to know it, then send me an e-mail.

I will leave your exam outside my office tomorrow by about noon, you may pick it up any time between then and the next class.

I will post the solutions on my website at about 4:00 PM today.

1. (6 points) Define "group". Use complete sentences.

A group is a set G together with an operation $*$ which satisfies the following properties.
Closure: If a and b are elements of G, then $a * b$ is an element of G.
Associativity: If a, b, and c are elements of G, then $(a * b) * c=a *(b * c)$.
Identity element: There exists an element id in G with id $* a=a$ and $a * \mathrm{id}=a$ for all a in G.
Inverses: If a is in G, then there is an element b in G with $a * b=\mathrm{id}$ and $b * a=\mathrm{id}$.

2. (6 points) Define "centralizer". Use complete sentences.

Let g be an element in the group G. The centralizer of g in G is the set of all elements of G which commute with g.
3. (6 points) Exhibit a group G and two elements a and b of G with $(a b)^{3} \neq a^{3} b^{3}$.

Let $G=D_{4}, a=\rho$, and $b=\sigma$. We see that

$$
(a b)^{3}=(\rho \sigma)^{3}=\rho \sigma
$$

since $\rho \sigma$ is a reflection. On the other hand,

$$
a^{3} b^{3}=\rho^{3} \sigma^{3}=\rho^{3} \sigma
$$

and $\rho \sigma \neq \rho^{3} \sigma$.
4. (7 points) Let G be a group and let a and b be elements of G with $a^{-1} b^{-1}=(a b)^{-1}$. Prove that $a b=b a$.

Multiply both sides of $a^{-1} b^{-1}=(a b)^{-1}$ on the right by $a b$ to see that

$$
a^{-1} b^{-1} a b=(a b)^{-1} a b .
$$

The fact that $(a b)^{-1}$ is the inverse of $a b$ ensures that the right side of the above equation is id; so,

$$
a^{-1} b^{-1} a b=\mathrm{id} .
$$

Now multiply both sides of the above equation on the left by $b a$ to get

$$
b a a^{-1} b^{-1} a b=b a \mathrm{id} ;
$$

which yields $a b=b a$.
5. (7 points) Let G be an abelian group and let H be the subset $H=\left\{g \in G \mid g^{3}=\mathrm{id}\right\}$ of G. Prove that H is a subgroup of G.
closure Take h_{1} and h_{2} from H. We see that $\left(h_{1} h_{2}\right)^{3}=h_{1}^{3} h_{2}^{3}$, because G is abelian. On the other hand, each h_{i} is in H; so, each $h_{i}^{3}=\mathrm{id}$; so, $\left(h_{1} h_{2}\right)^{3}=h_{1}^{3} h_{2}^{3}=(\mathrm{id}) \mathrm{id}=\mathrm{id}$ and $h_{1} h_{2} \in H$.
identity We see that $\mathrm{id}^{3}=\mathrm{id}$; thus, id $\in H$.
inverses Take $h \in H$. We know that h^{-1} exists in G. We must show that h^{-1} is in H. Multiply both sides of $h^{3}=$ id by $h^{-1} h^{-1} h^{-1}$ to see that $h^{-1} h^{-1} h^{-1} h^{3}=h^{-1} h^{-1} h^{-1}$; or id $=\left(h^{-1}\right)^{3}$. Thus, h^{-1} is in H.
associativity The operation associates on all of G; so the operation continues to associate on the subset H of G.
6. (6 points) List the elements that are in the centralizer of $\rho^{3} \sigma$ in D_{4}. (I do not need to see any explanation.)

$$
\mathrm{id}, \rho^{3} \sigma, \rho \sigma, \rho^{2}
$$

7. (6 points) Let $G=(\mathbb{Q} \backslash\{0\}, *)$, where $a * b=|a b|$. Is G a group? Explain.
No. This thing does not have an identity element. If id were an identity element, then

$$
-1=(-1) * \mathrm{id}=|-\mathrm{id}| .
$$

I do not know what -id is; but I do know that $0<|-\mathrm{id}|$; and therefore, $|-\mathrm{id}|$ does not equal -1 .
8. (6 points) Let $G=(\mathbb{Q} \backslash\{0\}, *)$, where $a * b=\frac{a}{b}$. Is G a group? Explain. No. The operation $*$ does not associate. Observe that

$$
1 *(2 * 3)=\frac{1}{2 * 3}=\frac{1}{\frac{2}{3}}=\frac{3}{2}
$$

but

$$
(1 * 2) * 3=\left(\frac{1}{2}\right) * 3=\frac{\frac{1}{2}}{3}=\frac{1}{6}
$$

and $\frac{3}{2} \neq \frac{1}{6}$.

