Math 546, Exam 3, Spring 2010

Write everything on the blank paper provided.
You should KEEP this piece of paper.
If possible: turn the problems in order (use as much paper as necessary), use only one side of each piece of paper, and leave 1 square inch in the upper left hand corner for the staple. If you forget some of these requests, don't worry about it - I will still grade your exam.

The exam is worth 50 points. There are $\mathbf{7}$ problems.
Write coherently in complete sentences.

No Calculators or Cell phones.

I will post the solutions later today.

1. (7 points) State Lagrange's Theorem. Use complete sentences. Write everything that is necessary, but nothing extra.

If H is a subgroup of a finite group G, then the number of elements in H divides the number of elements in G.
2. (7 points) Define normal subgroup. Use complete sentences. Write everything that is necessary for your definition to make sense, but nothing extra.

The subgroup H of the group G is a normal subgroup if $g h g^{-1} \in H$ for all $g \in G$ and all $h \in H$.
3. (7 points) Define group homomorphism. Use complete sentences. Write everything that is necessary for your definition to make sense, but nothing extra.

The function φ from the group $(G, *)$ to the group $\left(G^{\prime}, *^{\prime}\right)$ is a group homomorphism if $\varphi\left(g_{1} * g_{2}\right)=\varphi\left(g_{1}\right) *^{\prime} \varphi\left(g_{2}\right)$ for all $g_{1}, g_{2} \in G$.
4. (8 points) Let H be a normal subgroup of the group G. Suppose that a, b, c, and d are elements of G with $a H=b H$ and $c H=d H$. Prove that $a c H=b d H$.

The hypothesis $a H=b H$ tells us that there exists an element $h_{1} \in H$ with $a=b h_{1}$. The hypothesis $c H=d H$ tells us that there exists an element $h_{2} \in H$ with $c=d h_{2}$.

We now show $a c H \subseteq b d H$. A typical element of $a c H$ is ach for some $h \in H$. We see that

$$
a c h=\left(b h_{1}\right)\left(d h_{2}\right) h=b d\left(d^{-1} h_{1} d\right) h_{2} h .
$$

The hypothesis that H is a normal subgroup of G tells us that $d^{-1} h_{1} d \in H$; therefore, $\left(d^{-1} h_{1} d\right) h_{2} h \in H$, since H is a group. We have shown that ach is equal to $b d$ times an element of H; and therefore, $a c h \in b d H$.
We now show $b d H \subseteq a c H$. A typical element of $b d H$ is $b d h$ for some $h \in H$. We see that

$$
b d h=\left(a h_{1}^{-1}\right)\left(c h_{2}^{-1}\right) h=a c\left(c^{-1} h_{1}^{-1} c\right) h_{2}^{-1} h
$$

The hypothesis that H is a normal subgroup of G tells us that $c^{-1} h_{1}^{-1} c$ is in H; therefore, $\left(c^{-1} h_{1}^{-1} c\right) h_{2}^{-1} h \in H$, since H is a group. We have shown that $b d h$ is equal to $a c$ times an element of H; and therefore, $b d h \in a c H$.
5. (7 points) Give an example of a subgroup H of a group G and elements a, b, c, and d of G with $a H=b H$ and $c H=d H$, but $a c H \neq b d H$.
Let $G=D_{3}, H=\langle\sigma\rangle, a=\mathrm{id}, b=\sigma, c=\rho$, and $d=\sigma \rho^{2}$. We have

$$
a H=b H=\{\mathrm{id}, \sigma\} \quad \text { and } \quad c H=d H=\left\{\rho, \sigma \rho^{2}\right\} ;
$$

however,

$$
a c H=\operatorname{id} \rho H=\rho H=\left\{\rho, \sigma \rho^{2}\right\} \quad \text { and } \quad b d H=\sigma \sigma \rho^{2} H=\rho^{2} H=\left\{\rho^{2}, \sigma \rho\right\} .
$$

Thus, $a c H \neq b d H$.
6. (7 points) Write the addition table for $\frac{\mathbb{Z}}{4 \mathbb{Z}}$.

$$
\begin{array}{lllll}
& 0+4 \mathbb{Z} & 1+4 \mathbb{Z} & 2+4 \mathbb{Z} & 3+4 \mathbb{Z} \\
0+4 \mathbb{Z} & 0+4 \mathbb{Z} & 1+4 \mathbb{Z} & 2+4 \mathbb{Z} & 3+4 \mathbb{Z} \\
1+4 \mathbb{Z} & 1+4 \mathbb{Z} & 2+4 \mathbb{Z} & 3+4 \mathbb{Z} & 0+4 \mathbb{Z} \\
2+4 \mathbb{Z} & 2+4 \mathbb{Z} & 3+4 \mathbb{Z} & 0+4 \mathbb{Z} & 1+4 \mathbb{Z} \\
3+4 \mathbb{Z} & 3+4 \mathbb{Z} & 0+4 \mathbb{Z} & 1+4 \mathbb{Z} & 2+4 \mathbb{Z}
\end{array}
$$

7. (7 points) Let $(S, *)$ be the group $(\mathbb{R} \backslash\{-1\}, *)$ with $a * b=a b+a+b$ for all a and b in S. Define the function $\varphi:(\mathbb{R} \backslash\{0\}, \times) \rightarrow(S, *)$ by $\varphi(r)=r-1$. Prove that φ is a group homomorphism.
We see that φ is a function from $\mathbb{R} \backslash\{0\}$ to $\mathbb{R} \backslash\{-1\}$. We also see that if a and b are in $\mathbb{R} \backslash\{0\}$, then

$$
\begin{gathered}
\varphi(a) * \varphi(b)=(a-1) *(b-1)=(a-1)(b-1)+(a-1)+(b-1)=a b-a-b+1+a-1+b-1 \\
=a b-1=\varphi(a \times b) .
\end{gathered}
$$

