Math 546, Exam 2, Solutions, Fall 2011

Write everything on the blank paper provided.

You should KEEP this piece of paper.

If possible: turn the problems in order (use as much paper as necessary), use only one side of each piece of paper, and leave 1 square inch in the upper left hand corner for the staple. If you forget some of these requests, don't worry about it - I will still grade your exam.

The exam is worth 50 points. There are 8 problems.
Write coherently in complete sentences.

No Calculators or Cell phones.

I will post the solutions later today.

1. (7 points)Define centralizer. Use complete sentences. Write everything that is necessary for your definition to make sense, but nothing extra.

Let g be an element in a group G. The centralizer of g in G is the set of all elements in G which commute with g. In other words,

$$
C(g)=\{x \in G \mid x g=g x\} .
$$

2. (7 points) Define order. Use complete sentences. Write everything that is necessary for your definition to make sense, but nothing extra.

Let g be an element in a group G. The order of g is the least positive integer n for which g^{n} is equal to the identity element of G. If g^{n} is never equal to the identity element of G, for any positive integer n, then g has infinite order.
3. (6 points) State Lagrange's Theorem. If H is a subgroup of the finite group G, then the number of elements in H divides the number of elements in G.

4. (6 points) Prove Lagrange's Theorem.

The proof has two steps. In step (1) we show that every element of G is in exactly one left coset of H in G. In step (2) we show that every left coset of H in G has the same number of elements as H has. Once we have shown (1) and (2), then we have shown that $|G|=|H| \times|\{a H \mid a \in H\}|$, in other words, the number of elements in G is equal to the number of elements in H times the number of left cosets of H in G.

We prove (1). Take $a \in G$. It is clear that a is in the left coset $a H$. We show that a is not in any other left coset. Suppose that $a \in b H$ for some b in G. We
must show that the sets $a H$ and $b H$ are equal. The fact that $a \in b H$ tells us that $a=b h_{0}$ for some fixed $h_{0} \in H$. Take an arbitrary element $a h$ of $a H$; so $h \in H$. We see that $a h=b h_{0} h$. But H is a group and h_{0} and h are in H; so $h_{0} h \in H$ and $a h \in b H$. We have shown that $a H \subseteq b H$. Now, take an arbitrary element $b h$ of $b H$; so $h \in H$. We have $b h=a h_{0}^{-1} h$. But H is a group with h_{0} and h in H; so $h_{0}^{-1} h$ is in H and $b h \in a H$. We have shown that $b H \subseteq a H$. We conclude that $a H=b H$.

We prove (2). We establish a one-to-one correspondence between the elements of H and the elements of $a H$ for any fixed left coset $a H$ of H in G. If $h \in H$, then the corresponding element of $a H$ is $\alpha(h)=a h$. If $x \in a H$, then the corresponding element of H is $\beta(x)=a^{\text {inv }} x$. It is clear that $\alpha: H \rightarrow a H$ and $\beta: a H \rightarrow H$ are inverses of one another since $\beta(\alpha(h))=\beta(a h)=a^{\text {inv }} a h=h$ for all $h \in H$, and $\alpha(\beta(x))=\alpha\left(a^{\text {inv }} x\right)=a a^{\text {inv }} x=x$ for all $x \in a H$. It follows that $|H|=|a H|$ for all left cosets $a H$ of H in G.
5. (6 points) State the result about the relationship between the order of $a b$, the order of a, and the order of b. Be sure to include all of the hypotheses, but nothing extra.

Let a and b elements of the group G. Suppose that
(a) a and b have finite order,
(b) the order of a is relatively prime to the order of b, and
(c) $a b=b a$.

Then the order of $a b$ is equal to the order of a times the order of b.
6. (6 points) Prove the statement in problem 5.

Let m be the order of a and n be the order of b. It is clear from hypothesis (c) that

$$
(a b)^{n m}=\left(a^{m}\right)^{n}\left(b^{n}\right)^{m}=(\mathrm{id})^{n}(\mathrm{id})^{m}=\mathrm{id} .
$$

Thus, the order of $a b$ is at most $m n$. We must show that the order of $a b$ is at least $m n$. That is, suppose that r is a positive integer with $(a b)^{r}=\mathrm{id}$. We must show that $a b \leq r$. Well, hypothesis (c) together with the statement $(a b)^{r}=\mathrm{id}$ tells us that $a^{r}=\left(b^{\mathrm{inv}}\right)^{r}$. Thus, $a^{r} \in\langle a\rangle \cap\langle b\rangle$. The order of a and the order of b are relatively prime; so Lagrange's Theorem tells us that $\langle a\rangle \cap\langle b\rangle=\{\mathrm{id}\}$; but $\left.a^{r} \in\langle a\rangle \cap<b\right\rangle$; so $a^{r}=\mathrm{id}$. It follows that m divides r. Furthermore, $\left(b^{\mathrm{inv}}\right)^{r}=a^{r}=\mathrm{id} ;$ so, id $=b^{r}$. It follows that n divides r. The integers m and n are relatively prime with $m \mid r$ and $n \mid r$; hence, $m n \mid r$. But r is a positive integer; so r is some positive integer multiple of $m n$. We conclude that $m n \leq r$ and the proof is complete.
7. (6 points) List 8 subgroups of D_{4} in addition to all of D_{4} and $\{\mathbf{i d}\}$. A small amount of explanation would be perfect. I am thinking of D_{4} as the smallest subgroup of $\operatorname{Sym}(\mathbb{C})$ which contains σ and ρ, where $\operatorname{Sym}(\mathbb{C})$ is the group of invertible functions from the complex plane to the complex plane (with operation composition), ρ is rotation counterclockwise by $\pi / 2$, and σ is reflection across the x-axis.

The non-trivial cyclic subgroups of D_{4} are $\left.\langle\rho\rangle=\left\{\mathrm{id}, \rho, \rho^{2}, \rho^{3}\right\},<\rho^{2}\right\rangle=$ $\left\{\rho^{2}, \mathrm{id}\right\},<\sigma>=\{\sigma, \mathrm{id}\},<\rho \sigma>=\{\rho \sigma, \mathrm{id}\},<\rho^{2} \sigma>=\left\{\rho^{2} \sigma, \mathrm{id}\right\},<\rho^{3} \sigma>=$ $\left\{\rho^{3} \sigma, \mathrm{id}\right\}$. In quiz 3 , we found that the centralizer of σ in D_{4} is $\left\{\mathrm{id}, \sigma, \rho^{2} \sigma, \rho^{2}\right\}$. The exact same reasoning as we used quiz 3 shows that the centralizer of $\rho \sigma$ in H is $\left\{\mathrm{id}, \rho \sigma, \rho^{3} \sigma, \rho^{2}\right\}$. We have listed 8 subgroups of D_{4}.
8. (6 points) Give an example of a group G and elements a and b in G where a and b each have order 2 , but $a b$ has order 10 .

Let $G=\operatorname{Sym}(\mathbb{C}), a$ be

$$
\text { (rotation by } \left.\frac{2 \pi}{10}\right) \circ(\text { reflection across the } x \text {-axis })
$$

and b be reflection across the x-axis. We see that a and b both are reflections; so both of these elements of G have order 2 . We also see that $a b$ is rotation by $\frac{2 \pi}{10}$, which has oder 10

