
Math 546, Exam 2, Solutions, Fall 2011

Write everything on the blank paper provided.

You should KEEP this piece of paper.

If possible: turn the problems in order (use as much paper as necessary), use only
one side of each piece of paper, and leave 1 square inch in the upper left hand
corner for the staple. If you forget some of these requests, don’t worry about it – I
will still grade your exam.

The exam is worth 50 points. There are 8 problems.

Write coherently in complete sentences.

No Calculators or Cell phones.

I will post the solutions later today.

1. (7 points)Define centralizer. Use complete sentences. Write everything
that is necessary for your definition to make sense, but nothing extra.

Let g be an element in a group G . The centralizer of g in G is the set of all
elements in G which commute with g . In other words,

C(g) = {x ∈ G | xg = gx}.

2. (7 points) Define order. Use complete sentences. Write everything that
is necessary for your definition to make sense, but nothing extra.

Let g be an element in a group G . The order of g is the least positive integer
n for which gn is equal to the identity element of G . If gn is never equal to the
identity element of G , for any positive integer n , then g has infinite order.

3. (6 points) State Lagrange’s Theorem. If H is a subgroup of the finite group
G , then the number of elements in H divides the number of elements in G .

4. (6 points) Prove Lagrange’s Theorem.

The proof has two steps. In step (1) we show that every element of G is in exactly
one left coset of H in G . In step (2) we show that every left coset of H in G
has the same number of elements as H has. Once we have shown (1) and (2), then
we have shown that |G| = |H| × |{aH | a ∈ H}| , in other words, the number of
elements in G is equal to the number of elements in H times the number of left
cosets of H in G .

We prove (1). Take a ∈ G . It is clear that a is in the left coset aH . We show
that a is not in any other left coset. Suppose that a ∈ bH for some b in G . We
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must show that the sets aH and bH are equal. The fact that a ∈ bH tells us
that a = bh0 for some fixed h0 ∈ H . Take an arbitrary element ah of aH ; so
h ∈ H . We see that ah = bh0h . But H is a group and h0 and h are in H ; so
h0h ∈ H and ah ∈ bH . We have shown that aH ⊆ bH . Now, take an arbitrary
element bh of bH ; so h ∈ H . We have bh = ah−1

0
h . But H is a group with h0

and h in H ; so h−1

0
h is in H and bh ∈ aH . We have shown that bH ⊆ aH .

We conclude that aH = bH .

We prove (2). We establish a one-to-one correspondence between the elements
of H and the elements of aH for any fixed left coset aH of H in G . If h ∈ H ,
then the corresponding element of aH is α(h) = ah . If x ∈ aH , then the
corresponding element of H is β(x) = ainvx . It is clear that α : H → aH and
β : aH → H are inverses of one another since β(α(h)) = β(ah) = ainvah = h for
all h ∈ H , and α(β(x)) = α(ainvx) = aainvx = x for all x ∈ aH . It follows that
|H| = |aH| for all left cosets aH of H in G .

5. (6 points) State the result about the relationship between the order of
ab , the order of a , and the order of b . Be sure to include all of the
hypotheses, but nothing extra.

Let a and b elements of the group G . Suppose that

(a) a and b have finite order,

(b) the order of a is relatively prime to the order of b , and

(c) ab = ba .

Then the order of ab is equal to the order of a times the order of b .

6. (6 points) Prove the statement in problem 5.

Let m be the order of a and n be the order of b . It is clear from hypothesis (c)
that

(ab)nm = (am)n(bn)m = (id)n(id)m = id.

Thus, the order of ab is at most mn . We must show that the order of ab is at
least mn . That is, suppose that r is a positive integer with (ab)r = id . We must
show that ab ≤ r . Well, hypothesis (c) together with the statement (ab)r = id
tells us that ar = (binv)r . Thus, ar ∈ <a> ∩<b> . The order of a and the order
of b are relatively prime; so Lagrange’s Theorem tells us that <a>∩<b> = {id} ;
but ar ∈ <a> ∩ <b> ; so ar = id . It follows that m divides r . Furthermore,
(binv)r = ar = id ; so, id = br . It follows that n divides r . The integers m
and n are relatively prime with m|r and n|r ; hence, mn|r . But r is a positive
integer; so r is some positive integer multiple of mn . We conclude that mn ≤ r
and the proof is complete.
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7. (6 points) List 8 subgroups of D4 in addition to all of D4 and {id} .
A small amount of explanation would be perfect. I am thinking of
D4 as the smallest subgroup of Sym(C) which contains σ and ρ ,
where Sym(C) is the group of invertible functions from the complex
plane to the complex plane (with operation composition), ρ is rotation
counterclockwise by π/2 , and σ is reflection across the x -axis.

The non-trivial cyclic subgroups of D4 are <ρ> = {id, ρ, ρ2, ρ3} , <ρ2> =
{ρ2, id} , <σ> = {σ, id} , <ρσ> = {ρσ, id} , <ρ2σ> = {ρ2σ, id} , <ρ3σ> =
{ρ3σ, id} . In quiz 3, we found that the centralizer of σ in D4 is {id, σ, ρ2σ, ρ2} .
The exact same reasoning as we used quiz 3 shows that the centralizer of ρσ in H
is {id, ρσ, ρ3σ, ρ2} . We have listed 8 subgroups of D4 .

8. (6 points) Give an example of a group G and elements a and b in G
where a and b each have order 2 , but ab has order 10 .

Let G = Sym(C) , a be

(rotation by 2π

10
) ◦ (reflection across the x -axis),

and b be reflection across the x -axis. We see that a and b both are reflections;
so both of these elements of G have order 2 . We also see that ab is rotation by
2π

10
, which has oder 10


