
Math 546, Exam 1, Spring 2010
Write everything on the blank paper provided. You should KEEP this piece of
paper. If possible: turn the problems in order (use as much paper as necessary),
use only one side of each piece of paper, and leave 1 square inch in the upper left
hand corner for the staple. If you forget some of these requests, don’t worry about
it – I will still grade your exam.
The exam is worth 50 points. There are 5 problems. Each problem is worth 10
points. Write coherently in complete sentences.
No Calculators or Cell phones.

1. Recall that U6 is the subgroup {1, z, z2, z3, z4, z5} of (C,×) , with

z = e
2πı

6 = cos( 2π
6

) + ı sin( 2π
6

) .

(a) Identify 2 subgroups of U6 in addition to {1} and U6 . (I don’t
need to see a proof.)

Two subgroups of U6 are {1, z2, z4} and {1, z3} .
(b) Which elements of U6 generate U6 ? (Recall that the element g

of the group (G, ∗) generates G if every element of G is equal
to g ∗ g ∗ · · · ∗ g

︸ ︷︷ ︸

n times

, for some integer n .) (I do want to see an

explanation.)

We see that z , and z5 generate U6 . The powers of z5 are: z5, z4, z3, z2, z, 1 .
The other elements all generate smaller subgroups of U6 as is shown in (a).

2. Recall that D3 is the group {id, ρ, ρ2, σ, σρ, σρ2} , where σ is reflection
across the x -axis and ρ is rotation by 2π/3 radians, counter-
clockwise, fixing the origin.

(a) Identify 4 subgroups of D3 in addition to {id} and D3 . (I don’t
need to see a proof.)

Four subgroups of D3 are:

{id, σ}, {id, ρ, ρ2}, {id, σρ}, {id, σρ2}.

(b) Which elements of D3 generate D3 ? The word “generates” is
defined in problem 1. (I do want to see an explanation.)

Not element of D3 generates D3 . Indeed, id generates a subgroup with
one element; σ , σρ , and σρ2 each generate a subgroup with two elements;
and ρ and ρ2 each generate a subgroup with three elements.
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3. Let (G, ∗) be a group and H = {g ∗ g ∗ g | g ∈ G} .

(a) Assume that the group G is Abelian. Prove that H is a subgroup
of G .

Closure: Take a, b from H so a = g ∗ g ∗ g for some g ∈ G and
b = g′ ∗ g′ ∗ g′ for some g′ ∈ G . The group G is Abelian so

a ∗ b = (g ∗ g ∗ g) ∗ (g′ ∗ g′ ∗ g′) = (g ∗ g′) ∗ (g ∗ g′) ∗ (g ∗ g′),

which is in H because g ∗ g′ is in G .

Associativity: The operation ∗ is associative on all of G , so ∗ is
associative on the subset H of G .

Identity: If e is the identity element of G , then e = e∗e∗e and therefore,
e ∈ H .

Inverses: Let a ∈ G . It follows that a = g∗g∗g for some g ∈ G . Observe
that g−1 is in G and therefore g−1 ∗ g−1 ∗ g−1 is in H . Furthermore,
g−1 ∗ g−1 ∗ g−1 is the inverse of a because

a ∗ (g−1 ∗ g−1 ∗ g−1) = (g ∗ g ∗ g) ∗ (g−1 ∗ g−1 ∗ g−1) = e

and

(g−1 ∗ g−1 ∗ g−1) ∗ a = (g−1 ∗ g−1 ∗ g−1) ∗ (g ∗ g ∗ g) = e.

(b) Give an example which shows that H is not always a subgroup of
G . (Provide all details.)

If G is the group D3 , then

H = {id, σ, σρ, σρ2}

because,

id3 = id, ρ3 = id, (ρ2)3 = id, σ3 = σ, (σρ)3 = (σρ), (σρ2)3 = σρ2.

The set H is not a group because it is not closed. Indeed, we see that σ
and σρ are both in H but

σ(σρ) = ρ /∈ H.
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4. Let S = R \ {−2} . Define ∗ on S by a ∗ b = ab+2a+ 2b+ 2 . Prove that
(S, ∗) is a group.

Closure: Take a, b from S . We must show that a ∗ b is in S . Well,
a ∗ b = ab + 2a + 2b + 2 , which is clearly a real number. We must check that
ab + 2a + 2b + 2 is not equal to −2 . If ab + 2a + 2b + 2 were equal to −2 , then
ab + 2a + 2b + 2 = −2 ; so, ab + 2a + 2b + 4 = 0 ; that is, (a + 2)(b + 2) = 0 ; so
a = −2 or b = −2 . On the other hand, a and b are in S ; so neither a nor b is
−2 . We conclude that ab + 2a + 2b + 2 6= −2 ; therefore, ab + 2a + 2b + 2 ∈ S .

Associativity: Take a , b , and c from S . Observe that

a ∗ (b ∗ c) = a ∗ (bc + 2b + 2c + 2) = a(bc+ 2b + 2c +2) + 2a + 2(bc + 2b + 2c + 2) + 2

= abc + 2(ab + ac + bc) + 4(a + b + c) + 6.

On the other hand,

(a ∗ b) ∗ c = (ab+2a+2b+2) ∗ c = (ab+2a+2b+2)c+2(ab+2a+2b+2)+2c +2

= abc + 2(ab + ac + bc) + 4(a + b + c) + 6.

We see that a ∗ (b ∗ c) = (a ∗ b) ∗ c .

Identity: The number −1 is the identity element of S because a ∗ (−1) =
a(−1) + 2a + 2(−1) + 2 = a and (−1) ∗ a = (−1)a + 2(−1) + 2a + 2 = a for all
a ∈ S .

Inverses: Take a ∈ S . The inverse of a is −3−2a
a+2

because

a ∗
−3 − 2a

a + 2
= a

−3 − 2a

a + 2
+ 2a + 2

−3 − 2a

a + 2
+ 2 =

(a + 2)(−3 − 2a)

a + 2
+ 2a + 2 =

−3 − 2a + 2a + 2 = −1.

The operation * is commutative; so, −3−2a
a+2

∗ a is also equal to 0 . Notice, also,

that −3−2a
a+2

∈ S because −3−2a
a+2

is a real number (since a 6= −2 ) and −3−2a
a+2

is

not equal to −2 ; because if −3−2a
a+2

were equal to −2 , then −3−2a
a+2

= −2 , so
−3 − 2a = −2a − 4 ; that is, −3 = −4 .
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5. Recall that D4 is the group {id, ρ, ρ2, ρ3, σ, σρ, σρ2, σρ3} , where σ is
reflection across the x -axis and ρ is rotation by 2π/4 radians, counter-
clockwise, fixing the origin. List the elements of the following set:

Z = {τ ∈ D4 | τω = ωτ for all ω in D4 }.

I do want an explanation. We saw in class that the 8 listed elements
of D4 are distinct; we also saw that ρσ = σρ3 .

We compute that Z = {id, ρ2} . First of all, it is clear that id commutes with

all elements of D4 , so id ∈ Z . It is also easy to see that ρ2 commutes with every
element of Z . The key to establishing this assertion is:

ρ2σ = ρσρ3 = σρ3ρ3 = σρ2.

So, now we have
ρ2(σiρj) = σiρ2ρj = (σiρj)ρ2

for all i and j . So ρ2 commutes with all elements of D4 .
On the other hand, none of the other elements of D4 are in Z . Indeed,

ρσ = σρ3 6= σρ ; so neither σ nor ρ is in Z . Also,

ρ3(σρ) = σρ3ρ3ρ3ρ = σρ2 6= σ = (σρ)ρ3;

thus, neither ρ3 nor σρ is in Z . Also,

(σρ3)σ = σσρ3ρ3ρ3 = ρ 6= ρ3 = σ(σρ3);

thus, σρ3 /∈ Z . Finally,

ρ(σρ2) = σρ3ρ2 = σρ 6= σρ3 = (σρ2)ρ;

so, σρ2 /∈ Z .


