Math 546, Exam 1, Spring 2010
Write everything on the blank paper provided. You should KEEP this piece of
paper. If possible: turn the problems in order (use as much paper as necessary),
use only one side of each piece of paper, and leave 1 square inch in the upper left
hand corner for the staple. If you forget some of these requests, don’t worry about
it — I will still grade your exam.
The exam is worth 50 points. There are 5 problems. Each problem is worth 10
points. Write coherently in complete sentences.
No Calculators or Cell phones.

1. Recall that U is the subgroup {1,z 22 23 2% 2°} of (C,x), with
z=et = cos(2X) + 1sin(2F) .
(a) Identify 2 subgroups of Us in addition to {1} and Us. (I don’t

need to see a proof.)

Two subgroups of Ug are {1,22, 2%} and {1,23}.

(b) Which elements of Us generate Us ? (Recall that the element g
of the group (G,x) generates G if every element of G is equal
to gxgx---xg, for some integer n.) (I do want to see an

—_—

n times
explanation.)

We see that z, and 2° generate Us. The powers of 2% are: 2%, 2% 23 2% 2,1.

The other elements all generate smaller subgroups of Us as is shown in (a).

2. Recall that D3 is the group {id, p, p?, 0,0p,0p*}, where o is reflection
across the z-axis and p is rotation by 27/3 radians, counter-
clockwise, fixing the origin.

(a) Identify 4 subgroups of D3 in addition to {id} and D;. (I don’t
need to see a proof.)

Four subgroups of D3 are:

{id, o}, {id, p, p*}, {id, op}, {id, o p*}.

(b) Which elements of D3 generate D37 The word “generates” is
defined in problem 1. (I do want to see an explanation.)

Not element of D3 generates Ds. Indeed, id generates a subgroup with
one element; o, op, and op? each generate a subgroup with two elements;
and p and p? each generate a subgroup with three elements.
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3. Let (G,*) beagroupand H={g*xg*xg|geG}.

(a) Assume that the group G is Abelian. Prove that H is a subgroup

of GG.
Closure: Take a,b from H so a = g* g * g for some g € G and
b=g¢g x¢g x¢g for some ¢’ € G. The group G is Abelian so

axb=(gxgxg)*(¢'xg *xg)=(gx9")*x(g*g)*(g*7),

which is in H because g * g’ isin G .

Associativity: The operation * is associative on all of G, so * is
associative on the subset H of G.

Identity: If e is the identity element of G, then e = exexe and therefore,
ec .

Inverses: Let a € G . It follows that a = gxg*xg for some g € GG. Observe
1 1 1

that ¢~! is in G and therefore ¢g7' x g7' x ¢~ ! is in H. Furthermore,
g ' x g7t x g1 is the inverse of a because

ax (g7 xg T xgT) = (grgrg)x (9T xg T vgT ) =e
and

(97 *g T g ) xa= (g7 kg kg ) x(grgrg) =

Give an example which shows that H is not always a subgroup of
G . (Provide all details.)

If G is the group D3, then
H = {id, 0, 0p, 0p*}
because,
id® = id, p® =id, (p?)® = id, 0> = 0, (0p)® = (0p), (6p*)® = 7p*.

The set H is not a group because it is not closed. Indeed, we see that o
and op are both in H but

o(op)=p¢ H.
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4. Let S =R\ {—-2}. Define * on S by axb=ab+2a+2b+2. Prove that
(S,*) is a group.

Closure: Take a,b from S. We must show that a xb is in S. Well,
a*b=ab+ 2a + 2b+ 2, which is clearly a real number. We must check that
ab+ 2a 4+ 2b+ 2 is not equal to —2. If ab+ 2a 4+ 2b+ 2 were equal to —2, then
ab+2a+2b+2=—-2;s0, ab+2a+2b+4=0; thatis, (a+2)(b+2) =0; so
a= —2 or b= —2. On the other hand, a and b are in S'; so neither a nor b is
—2. We conclude that ab+ 2a + 2b + 2 # —2; therefore, ab+2a+2b+2 € S.

Associativity: Take a, b, and ¢ from S. Observe that

ax(bxc)=ax(bc+2b+2c+2) =a(bc+2b+2c+2)+2a+2(bc+2b+2c+2) + 2

= abc + 2(ab+ ac+ be) +4(a+ b+ c) + 6.

On the other hand,

(axb)xc=(ab+2a+2b+2)xc=(ab+2a+2b+2)c+2(ab+2a+2b+2)+2c+2

= abc + 2(ab+ ac+ be) +4(a + b+ c) + 6.
We see that a* (bxc) = (axb)*c.

Identity: The number —1 is the identity element of S because a * (—1) =
a(-1)+2a+2(—-1)+2=a and (—1)*xa=(—1)a+2(—1)+2a+ 2 = a for all
acs.

Inverses: Take a € S. The inverse of a is % because

-3 —2a -3 —2a -3 —2a (a+2)(—3 —2a)
e A YT S Ay g
ave  Yarz T T a+2

+2a+2=

—-3—-2a+2a+2=-1.

The operation * is commutative; so, _5’;22“ x a is also equal to 0. Notice, also,

—3—2a —3—2a . —3—2a
that =55 € S because =% is a real number (since a # —2) and o s
not equal to —2; because if _2;22‘1 were equal to —2, then _2;22‘1 = —2, so

—3 —2a = —2a—4; that is, —3 = —4.
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5. Recall that D, is the group {id,p,p? p3 0,0p,0p% 0p3}, where o is
reflection across the r-axis and p isrotation by 27/4 radians, counter-
clockwise, fixing the origin. List the elements of the following set:

Z={re€Dy|Tw=wrforall win D, }.

I do want an explanation. We saw in class that the 8 listed elements
of D, are distinct; we also saw that po = op3.

We compute that Z =|{id, p2} . First of all, it is clear that id commutes with

all elements of Dy, so id € Z . It is also easy to see that p? commutes with every
element of Z . The key to establishing this assertion is:

p’o = pop’ = op’p® = ap®.

So, now we have . - .
p(a'p?) = a'p’p’ = (o'p’)p?
for all 7+ and j. So p? commutes with all elements of Dy .

On the other hand, none of the other elements of D, are in Z. Indeed,
po = op> # op; so neither ¢ nor p isin Z. Also,

p*(op) = op’p’p’p = 0p® # o = (op)p’;
thus, neither p3 nor op isin Z. Also,
(0p”)o = 00p’p’p® = p # p* = o(0p”);
thus, op® ¢ Z. Finally,
plop?) = op’p® = op # op® = (0p°)p;

so, op? ¢ 7.



