Math 546, Exam 1, Spring 2010

Write everything on the blank paper provided. You should KEEP this piece of paper. If possible: turn the problems in order (use as much paper as necessary), use only one side of each piece of paper, and leave 1 square inch in the upper left hand corner for the staple. If you forget some of these requests, don't worry about it - I will still grade your exam.

The exam is worth 50 points. There are **5** problems. Each problem is worth 10 points. Write **coherently** in **complete sentences**.

No Calculators or Cell phones.

- 1. Recall that U_6 is the subgroup $\{1, z, z^2, z^3, z^4, z^5\}$ of (\mathbb{C}, \times) , with $z = e^{\frac{2\pi i}{6}} = \cos(\frac{2\pi}{6}) + i \sin(\frac{2\pi}{6})$.
 - (a) Identify 2 subgroups of U_6 in addition to $\{1\}$ and U_6 . (I don't need to see a proof.)

Two subgroups of U_6 are $\{1, z^2, z^4\}$ and $\{1, z^3\}$.

(b) Which elements of U_6 generate U_6 ? (Recall that the element g of the group (G,*) generates G if every element of G is equal to $\underbrace{g*g*\cdots*g}_{n \text{ times}}$, for some integer n.) (I do want to see an explanation.)

We see that z, and z^5 generate U_6 . The powers of z^5 are: $z^5, z^4, z^3, z^2, z, 1$. The other elements all generate smaller subgroups of U_6 as is shown in (a).

- 2. Recall that D_3 is the group $\{id, \rho, \rho^2, \sigma, \sigma\rho, \sigma\rho^2\}$, where σ is reflection across the *x*-axis and ρ is rotation by $2\pi/3$ radians, counter-clockwise, fixing the origin.
 - (a) Identify 4 subgroups of D_3 in addition to {id} and D_3 . (I don't need to see a proof.)

Four subgroups of D_3 are:

$$\{\mathrm{id},\sigma\},\{\mathrm{id},\rho,\rho^2\},\{id,\sigma\rho\},\{\mathrm{id},\sigma\rho^2\}.$$

(b) Which elements of D_3 generate D_3 ? The word "generates" is defined in problem 1. (I do want to see an explanation.)

Not element of D_3 generates D_3 . Indeed, id generates a subgroup with one element; σ , $\sigma\rho$, and $\sigma\rho^2$ each generate a subgroup with two elements; and ρ and ρ^2 each generate a subgroup with three elements.

- 3. Let (G, *) be a group and $H = \{g * g * g \mid g \in G\}$.
 - (a) Assume that the group $\,G\,$ is Abelian. Prove that $\,H\,$ is a subgroup of $\,G\,$.

Closure: Take a, b from H so a = g * g * g for some $g \in G$ and b = g' * g' * g' for some $g' \in G$. The group G is Abelian so

$$a * b = (g * g * g) * (g' * g' * g') = (g * g') * (g * g') * (g * g'),$$

which is in H because g * g' is in G.

Associativity: The operation * is associative on all of G, so * is associative on the subset H of G.

Identity: If e is the identity element of G, then e = e * e * e and therefore, $e \in H$.

Inverses: Let $a \in G$. It follows that a = g * g * g for some $g \in G$. Observe that g^{-1} is in G and therefore $g^{-1} * g^{-1} * g^{-1}$ is in H. Furthermore, $g^{-1} * g^{-1} * g^{-1}$ is the inverse of a because

$$a * (g^{-1} * g^{-1} * g^{-1}) = (g * g * g) * (g^{-1} * g^{-1} * g^{-1}) = e$$

and

$$(g^{-1} * g^{-1} * g^{-1}) * a = (g^{-1} * g^{-1} * g^{-1}) * (g * g * g) = e.$$

(b) Give an example which shows that H is not always a subgroup of G. (Provide all details.)

If G is the group D_3 , then

$$H = \{ \mathrm{id}, \sigma, \sigma\rho, \sigma\rho^2 \}$$

because,

$$\mathrm{id}^3=\mathrm{id}, \rho^3=\mathrm{id}, (\rho^2)^3=\mathrm{id}, \sigma^3=\sigma, (\sigma\rho)^3=(\sigma\rho), (\sigma\rho^2)^3=\sigma\rho^2.$$

The set H is not a group because it is not closed. Indeed, we see that σ and $\sigma \rho$ are both in H but

$$\sigma(\sigma\rho) = \rho \notin H.$$

4. Let $S = \mathbb{R} \setminus \{-2\}$. Define * on S by a * b = ab + 2a + 2b + 2. Prove that (S, *) is a group.

Closure: Take a, b from S. We must show that a * b is in S. Well, a * b = ab + 2a + 2b + 2, which is clearly a real number. We must check that ab + 2a + 2b + 2 is not equal to -2. If ab + 2a + 2b + 2 were equal to -2, then ab + 2a + 2b + 2 = -2; so, ab + 2a + 2b + 4 = 0; that is, (a + 2)(b + 2) = 0; so a = -2 or b = -2. On the other hand, a and b are in S; so neither a nor b is -2. We conclude that $ab + 2a + 2b + 2 \neq -2$; therefore, $ab + 2a + 2b + 2 \in S$.

Associativity: Take a, b, and c from S. Observe that

$$a * (b * c) = a * (bc + 2b + 2c + 2) = a(bc + 2b + 2c + 2) + 2a + 2(bc + 2b + 2c + 2) + 2(bc + 2b + 2(bc + 2b + 2c + 2) + 2(bc + 2b + 2) + 2(bc + 2b + 2) + 2(bc + 2b + 2) + 2(bc + 2) + 2(bc + 2b + 2) + 2(bc + 2b + 2) + 2(bc +$$

$$= abc + 2(ab + ac + bc) + 4(a + b + c) + 6.$$

On the other hand,

$$= abc + 2(ab + ac + bc) + 4(a + b + c) + 6.$$

We see that a * (b * c) = (a * b) * c.

Identity: The number -1 is the identity element of S because a * (-1) = a(-1) + 2a + 2(-1) + 2 = a and (-1) * a = (-1)a + 2(-1) + 2a + 2 = a for all $a \in S$.

Inverses: Take $a \in S$. The inverse of a is $\frac{-3-2a}{a+2}$ because

$$-3 - 2a + 2a + 2 = -1$$

The operation * is commutative; so, $\frac{-3-2a}{a+2} * a$ is also equal to 0. Notice, also, that $\frac{-3-2a}{a+2} \in S$ because $\frac{-3-2a}{a+2}$ is a real number (since $a \neq -2$) and $\frac{-3-2a}{a+2}$ is not equal to -2; because if $\frac{-3-2a}{a+2}$ were equal to -2, then $\frac{-3-2a}{a+2} = -2$, so -3-2a = -2a - 4; that is, -3 = -4.

5. Recall that D_4 is the group $\{id, \rho, \rho^2, \rho^3, \sigma, \sigma\rho, \sigma\rho^2, \sigma\rho^3\}$, where σ is reflection across the *x*-axis and ρ is rotation by $2\pi/4$ radians, counterclockwise, fixing the origin. List the elements of the following set:

$$Z = \{ \tau \in D_4 \mid \tau \omega = \omega \tau \text{ for all } \omega \text{ in } D_4 \}.$$

I do want an explanation. We saw in class that the 8 listed elements of D_4 are distinct; we also saw that $\rho\sigma = \sigma\rho^3$.

We compute that $Z = [\{id, \rho^2\}]$. First of all, it is clear that id commutes with all elements of D_4 , so $id \in Z$. It is also easy to see that ρ^2 commutes with every element of Z. The key to establishing this assertion is:

$$\rho^2 \sigma = \rho \sigma \rho^3 = \sigma \rho^3 \rho^3 = \sigma \rho^2.$$

So, now we have

$$\rho^2(\sigma^i\rho^j)=\sigma^i\rho^2\rho^j=(\sigma^i\rho^j)\rho^2$$

for all i and j. So ρ^2 commutes with all elements of D_4 .

On the other hand, none of the other elements of D_4 are in Z. Indeed, $\rho\sigma = \sigma\rho^3 \neq \sigma\rho$; so neither σ nor ρ is in Z. Also,

$$\rho^{3}(\sigma\rho) = \sigma\rho^{3}\rho^{3}\rho^{3}\rho = \sigma\rho^{2} \neq \sigma = (\sigma\rho)\rho^{3};$$

thus, neither ρ^3 nor $\sigma\rho$ is in Z. Also,

$$(\sigma\rho^3)\sigma = \sigma\sigma\rho^3\rho^3\rho^3 = \rho \neq \rho^3 = \sigma(\sigma\rho^3);$$

thus, $\sigma \rho^3 \notin Z$. Finally,

$$\rho(\sigma\rho^2) = \sigma\rho^3\rho^2 = \sigma\rho \neq \sigma\rho^3 = (\sigma\rho^2)\rho;$$

so, $\sigma \rho^2 \notin Z$.