Math 546, Exam 1, Spring 2010
Write everything on the blank paper provided. You should KEEP this piece of paper. If possible: turn the problems in order (use as much paper as necessary), use only one side of each piece of paper, and leave 1 square inch in the upper left hand corner for the staple. If you forget some of these requests, don't worry about it - I will still grade your exam.
The exam is worth 50 points. There are $\mathbf{5}$ problems. Each problem is worth 10 points. Write coherently in complete sentences.
No Calculators or Cell phones.

1. Recall that U_{6} is the subgroup $\left\{1, z, z^{2}, z^{3}, z^{4}, z^{5}\right\}$ of (\mathbb{C}, \times), with $z=e^{\frac{2 \pi \imath}{6}}=\cos \left(\frac{2 \pi}{6}\right)+\imath \sin \left(\frac{2 \pi}{6}\right)$.
(a) Identify 2 subgroups of U_{6} in addition to $\{1\}$ and U_{6}. (I don't need to see a proof.)

Two subgroups of U_{6} are $\left\{1, z^{2}, z^{4}\right\}$ and $\left\{1, z^{3}\right\}$.
(b) Which elements of U_{6} generate U_{6} ? (Recall that the element g of the group $(G, *)$ generates G if every element of G is equal to $\underbrace{g * g * \cdots * g}_{n \text { times }}$, for some integer n.) (I do want to see an explanation.)

We see that z, and z^{5} generate U_{6}. The powers of z^{5} are: $z^{5}, z^{4}, z^{3}, z^{2}, z, 1$. The other elements all generate smaller subgroups of U_{6} as is shown in (a).
2. Recall that D_{3} is the group $\left\{\mathbf{i d}, \rho, \rho^{2}, \sigma, \sigma \rho, \sigma \rho^{2}\right\}$, where σ is reflection across the x-axis and ρ is rotation by $2 \pi / 3$ radians, counterclockwise, fixing the origin.
(a) Identify 4 subgroups of D_{3} in addition to $\{\mathbf{i d}\}$ and D_{3}. (I don't need to see a proof.)

Four subgroups of D_{3} are:

$$
\{\mathrm{id}, \sigma\},\left\{\mathrm{id}, \rho, \rho^{2}\right\},\{i d, \sigma \rho\},\left\{\mathrm{id}, \sigma \rho^{2}\right\} .
$$

(b) Which elements of D_{3} generate D_{3} ? The word "generates" is defined in problem 1. (I do want to see an explanation.)

Not element of D_{3} generates D_{3}. Indeed, id generates a subgroup with one element; $\sigma, \sigma \rho$, and $\sigma \rho^{2}$ each generate a subgroup with two elements; and ρ and ρ^{2} each generate a subgroup with three elements.
3. Let $(G, *)$ be a group and $H=\{g * g * g \mid g \in G\}$.
(a) Assume that the group G is Abelian. Prove that H is a subgroup of G.

Closure: Take a, b from H so $a=g * g * g$ for some $g \in G$ and $b=g^{\prime} * g^{\prime} * g^{\prime}$ for some $g^{\prime} \in G$. The group G is Abelian so

$$
a * b=(g * g * g) *\left(g^{\prime} * g^{\prime} * g^{\prime}\right)=\left(g * g^{\prime}\right) *\left(g * g^{\prime}\right) *\left(g * g^{\prime}\right),
$$

which is in H because $g * g^{\prime}$ is in G.
Associativity: The operation $*$ is associative on all of G, so $*$ is associative on the subset H of G.

Identity: If e is the identity element of G, then $e=e * e * e$ and therefore, $e \in H$.

Inverses: Let $a \in G$. It follows that $a=g * g * g$ for some $g \in G$. Observe that g^{-1} is in G and therefore $g^{-1} * g^{-1} * g^{-1}$ is in H. Furthermore, $g^{-1} * g^{-1} * g^{-1}$ is the inverse of a because

$$
a *\left(g^{-1} * g^{-1} * g^{-1}\right)=(g * g * g) *\left(g^{-1} * g^{-1} * g^{-1}\right)=e
$$

and

$$
\left(g^{-1} * g^{-1} * g^{-1}\right) * a=\left(g^{-1} * g^{-1} * g^{-1}\right) *(g * g * g)=e .
$$

(b) Give an example which shows that H is not always a subgroup of G. (Provide all details.)

If G is the group D_{3}, then

$$
H=\left\{\mathrm{id}, \sigma, \sigma \rho, \sigma \rho^{2}\right\}
$$

because,

$$
\mathrm{id}^{3}=\mathrm{id}, \rho^{3}=\mathrm{id},\left(\rho^{2}\right)^{3}=\mathrm{id}, \sigma^{3}=\sigma,(\sigma \rho)^{3}=(\sigma \rho),\left(\sigma \rho^{2}\right)^{3}=\sigma \rho^{2}
$$

The set H is not a group because it is not closed. Indeed, we see that σ and $\sigma \rho$ are both in H but

$$
\sigma(\sigma \rho)=\rho \notin H
$$

4. Let $S=\mathbb{R} \backslash\{-2\}$. Define $*$ on S by $a * b=a b+2 a+2 b+2$. Prove that $(S, *)$ is a group.

Closure: Take a, b from S. We must show that $a * b$ is in S. Well, $a * b=a b+2 a+2 b+2$, which is clearly a real number. We must check that $a b+2 a+2 b+2$ is not equal to -2 . If $a b+2 a+2 b+2$ were equal to -2 , then $a b+2 a+2 b+2=-2$; so, $a b+2 a+2 b+4=0$; that is, $(a+2)(b+2)=0$; so $a=-2$ or $b=-2$. On the other hand, a and b are in S; so neither a nor b is -2 . We conclude that $a b+2 a+2 b+2 \neq-2$; therefore, $a b+2 a+2 b+2 \in S$.

Associativity: Take a, b, and c from S. Observe that

$$
\begin{gathered}
a *(b * c)=a *(b c+2 b+2 c+2)=a(b c+2 b+2 c+2)+2 a+2(b c+2 b+2 c+2)+2 \\
=a b c+2(a b+a c+b c)+4(a+b+c)+6
\end{gathered}
$$

On the other hand,

$$
\begin{gathered}
(a * b) * c=(a b+2 a+2 b+2) * c=(a b+2 a+2 b+2) c+2(a b+2 a+2 b+2)+2 c+2 \\
=a b c+2(a b+a c+b c)+4(a+b+c)+6
\end{gathered}
$$

We see that $a *(b * c)=(a * b) * c$.
Identity: The number -1 is the identity element of S because $a *(-1)=$ $a(-1)+2 a+2(-1)+2=a$ and $(-1) * a=(-1) a+2(-1)+2 a+2=a$ for all $a \in S$.

Inverses: Take $a \in S$. The inverse of a is $\frac{-3-2 a}{a+2}$ because

$$
\begin{gathered}
a * \frac{-3-2 a}{a+2}=a \frac{-3-2 a}{a+2}+2 a+2 \frac{-3-2 a}{a+2}+2=\frac{(a+2)(-3-2 a)}{a+2}+2 a+2= \\
-3-2 a+2 a+2=-1 .
\end{gathered}
$$

The operation $*$ is commutative; so, $\frac{-3-2 a}{a+2} * a$ is also equal to 0 . Notice, also, that $\frac{-3-2 a}{a+2} \in S$ because $\frac{-3-2 a}{a+2}$ is a real number (since $a \neq-2$) and $\frac{-3-2 a}{a+2}$ is not equal to -2 ; because if $\frac{-3-2 a}{a+2}$ were equal to -2 , then $\frac{-3-2 a}{a+2}=-2$, so $-3-2 a=-2 a-4$; that is, $-3=-4$.
5. Recall that D_{4} is the group $\left\{\mathbf{i d}, \rho, \rho^{2}, \rho^{3}, \sigma, \sigma \rho, \sigma \rho^{2}, \sigma \rho^{3}\right\}$, where σ is reflection across the x-axis and ρ is rotation by $2 \pi / 4$ radians, counterclockwise, fixing the origin. List the elements of the following set:

$$
Z=\left\{\tau \in D_{4} \mid \tau \omega=\omega \tau \text { for all } \omega \text { in } D_{4}\right\}
$$

I do want an explanation. We saw in class that the 8 listed elements of D_{4} are distinct; we also saw that $\rho \sigma=\sigma \rho^{3}$.
We compute that $Z=\left\{\mathrm{id}, \rho^{2}\right\}$. First of all, it is clear that id commutes with all elements of D_{4}, so id $\in Z$. It is also easy to see that ρ^{2} commutes with every element of Z. The key to establishing this assertion is:

$$
\rho^{2} \sigma=\rho \sigma \rho^{3}=\sigma \rho^{3} \rho^{3}=\sigma \rho^{2}
$$

So, now we have

$$
\rho^{2}\left(\sigma^{i} \rho^{j}\right)=\sigma^{i} \rho^{2} \rho^{j}=\left(\sigma^{i} \rho^{j}\right) \rho^{2}
$$

for all i and j. So ρ^{2} commutes with all elements of D_{4}.
On the other hand, none of the other elements of D_{4} are in Z. Indeed, $\rho \sigma=\sigma \rho^{3} \neq \sigma \rho$; so neither σ nor ρ is in Z. Also,

$$
\rho^{3}(\sigma \rho)=\sigma \rho^{3} \rho^{3} \rho^{3} \rho=\sigma \rho^{2} \neq \sigma=(\sigma \rho) \rho^{3} ;
$$

thus, neither ρ^{3} nor $\sigma \rho$ is in Z. Also,

$$
\left(\sigma \rho^{3}\right) \sigma=\sigma \sigma \rho^{3} \rho^{3} \rho^{3}=\rho \neq \rho^{3}=\sigma\left(\sigma \rho^{3}\right)
$$

thus, $\sigma \rho^{3} \notin Z$. Finally,

$$
\rho\left(\sigma \rho^{2}\right)=\sigma \rho^{3} \rho^{2}=\sigma \rho \neq \sigma \rho^{3}=\left(\sigma \rho^{2}\right) \rho ;
$$

so, $\sigma \rho^{2} \notin Z$.

