Math 546, Exam 1, SOLUTIONS Fall 2011

Write everything on the blank paper provided. You should KEEP this piece of paper. If possible: turn the problems in order (use as much paper as necessary), use only one side of each piece of paper, and leave 1 square inch in the upper left hand corner for the staple. If you forget some of these requests, don't worry about it – I will still grade your exam.

The exam is worth 50 points. There are **5** problems. Each problem is worth 10 points. Write **coherently** in **complete sentences**. **No Calculators or Cell phones.**

- 1. Recall that U_{12} is the subgroup $\{1, z, z^2, z^3, z^4, z^5, z^6, z^7, z^8, z^9, z^{10}, z^{11}\}$ of $(\mathbb{C} \setminus \{0\}, \times)$, with $z = e^{\frac{2\pi i}{12}} = \cos(\frac{2\pi}{12}) + i \sin(\frac{2\pi}{12})$.
 - (a) Identify 4 subgroups of U_{12} in addition to $\{1\}$ and U_{12} . Please give a complete explanation.

Four subgroups of U_{12} are

$$\{1, z^2, z^4, z^6, z^8, z^{10}\}, \{1, z^3, z^6, z^9\}, \{1, z^4, z^8\}, \{1, z^6\}.$$

In each case, the indicated subset is closed under multiplication; and therefore, the subset is a subgroup.

(b) Which elements of U_{12} generate U_{12} ? (Recall that the element g of the group (G,*) generates G if every element of G is equal to $\underbrace{g*g*\cdots*g}_{n \text{ times}}$, for some integer n.) Please give a complete explanation.

We see that z, z^5 , z^7 , and z^{11} generate U_{12} . Indeed $z = (z^{11})^{11} \in \langle z^{11} \rangle$, $z = (z^5)^5 \in \langle z^5 \rangle$, and $z = (z^7)^7 \in \langle z^7 \rangle$. It follows that $\langle z^{11} \rangle$, $\langle z^5 \rangle$, and $\langle z^7 \rangle$ all are equal to $\langle z \rangle = U_{12}$. The other elements all generate smaller subgroups of U_{12} as is shown in (a).

2. Let $S = \mathbb{R} \setminus \{4\}$. Define * on S by a * b = 20 - 4a - 4b + ab. Prove that (S, *) is a group.

Closure: Take a, b from S. We must show that a * b is in S. Well, a * b = 20 - 4a - 4b + ab, which is clearly a real number. We must check that 20 - 4a - 4b + ab is not equal to 4. If 20 - 4a - 4b + ab were equal to 4, then 20 - 4a - 4b + ab = 4; so, 16 - 4a - 4b + ab = 0; that is, (a - 4)(b - 4) = 0; so a = 4 or b = 4. On the other hand, a and b are in S; so neither a nor b is 4. We conclude that $20 - 4a - 4b + ab \neq 4$; therefore, $20 - 4a - 4b + ab \in S$

Associativity: Take a, b, and c from S. Observe that

a * (b * c) = a * (20 - 4b - 4c + bc) = 20 - 4a - 4(20 - 4b - 4c + bc) + a(20 - 4b - 4c + bc)

$$= -60 + 16a + 16b + 16c - 4ab - 4ac - 4bc + abc.$$

On the other hand,

$$(a*b)*c = (20 - 4a - 4b + ab)*c = 20 - 4(20 - 4a - 4b + ab) - 4c + (20 - 4a - 4b + ab)c = -60 + 16a + 16b + 16c - 4ab - 4ac - 4bc + abc.$$

We see that a * (b * c) = (a * b) * c.

Identity: The number 5 is the identity element of S because

$$a * 5 = 20 - 4a - 4(5) + a(5) = a$$

and 5 * a = 20 - 4(5) - 4a + 5a = a for all $a \in S$.

Inverses: Take $a \in S$. The inverse of a is $\frac{15-4a}{4-a}$ because

$$a * \frac{15 - 4a}{4 - a} = 20 - 4a - 4\left(\frac{15 - 4a}{4 - a}\right) + a\left(\frac{15 - 4a}{4 - a}\right) = 20 - 4a + \frac{(-4 + a)(15 - 4a)}{4 - a} = 20 - 4a - (15 - 4a) = 5.$$

The operation * is commutative; so, $\frac{15-4a}{4-a} * a$ is also equal to 0. Notice, also, that $\frac{15-4a}{4-a} \in S$ because $\frac{15-4a}{4-a}$ is a real number (since $a \neq 4$) and $\frac{15-4a}{4-a}$ is not equal to 4; because if $\frac{15-4a}{4-a}$ were equal to 4, then $\frac{15-4a}{4-a} = 4$, so 15-4a = 4(4-a); that is, 15 = 16, which of course is not possible.

3. Let G be a group with identity element id. Suppose that H and K are subgroups of G with $H \neq \{id\}$ and $K \neq \{id\}$. Is it possible for $H \cap K$ to equal $\{id\}$? If $H \cap K = \{id\}$ is possible, then give an example. If $H \cap K = \{id\}$ is not possible, then give a proof. (Recall that $H \cap K$ is the *intersection* of H and K; that is, $H \cap K = \{g \in G \mid g \in H \text{ AND } g \in K\}$.)

Of course, $H \cap K$ is possible. Let G be the Klein 4-group with 4 distinct elements $\operatorname{id}, a, b, c$ with identity element $\operatorname{id}, a^2 = b^2 = c^2 = \operatorname{id}, ba = ab = c, ca = ac = b, cb = bc = a$. We have seen examples of such groups. Let $H = \{\operatorname{id}, a\}$ and $K = \{\operatorname{id}, b\}$. The sets H and K are closed; hence they are subgroups of G. The intersection of H and K consists only of the identity element id .

4. Let G be a group. Suppose that H and K are subgroups of G. Does $H \cup K$ have to be a subgroup of G? If $H \cup K$ is always a subgroup of G, then give a proof. If it is possible for $H \cup K$ not to be a subgroup of G, then give an example. (Recall that $H \cup K$ is the union of H and K; that is, $H \cup K = \{g \in G \mid g \in H \text{ OR } g \in K\}$.)

Of course, $H \cup K$ does NOT have to be a subgroup of G. Take G, H, and K as in problem 3. So H and K are subgroups of G, but $H \cup K$ is not a subgroup of G because $H \cup K$ is not closed because a is in $H \cup K$, b is in $H \cup K$, but ab = c is not in $H \cup K$.

5. Let (G, *) be an Abelian group with identity element id and $H = \{g \in G \mid g * g * g = id\}$. Prove that H is a subgroup of G.

Closure: Take a, b from H so a * a * a = id and b * b * b = id. The group G is Abelian so

$$(a * b) * (a * b) * (a * b) = (a * a * a) * (b * b * b) = id * id = id.$$

Thus, a * b is in H

Associativity: The operation * is associative on all of G, so * is associative on the subset H of G.

Identity: We are given that id is the identity element of G. It follows that then id * id * id = id and therefore, $id \in H$.

Inverses: Let $a \in G$. It follows that a * a * a = id. We are told that G is a group. So a has an inverse, lets call it a^{inv} , in G, Multiply the above equation by a^{inv} to get $\text{id} = a^{\text{inv}} * a^{\text{inv}} * a^{\text{inv}}$. Conclude that a^{inv} is in H.