Math 546, Exam 1, SOLUTIONS Fall 2011

Write everything on the blank paper provided. You should KEEP this piece of paper. If possible: turn the problems in order (use as much paper as necessary), use only one side of each piece of paper, and leave 1 square inch in the upper left hand corner for the staple. If you forget some of these requests, don't worry about it - I will still grade your exam.
The exam is worth 50 points. There are $\mathbf{5}$ problems. Each problem is worth 10 points. Write coherently in complete sentences.
No Calculators or Cell phones.

1. Recall that U_{12} is the subgroup $\left\{1, z, z^{2}, z^{3}, z^{4}, z^{5}, z^{6}, z^{7}, z^{8}, z^{9}, z^{10}, z^{11}\right\}$ of $(\mathbb{C} \backslash\{0\}, \times)$, with $z=e^{\frac{2 \pi \imath}{12}}=\cos \left(\frac{2 \pi}{12}\right)+\imath \sin \left(\frac{2 \pi}{12}\right)$.
(a) Identify 4 subgroups of U_{12} in addition to $\{1\}$ and U_{12}. Please give a complete explanation.

Four subgroups of U_{12} are

$$
\left\{1, z^{2}, z^{4}, z^{6}, z^{8}, z^{10}\right\}, \quad\left\{1, z^{3}, z^{6}, z^{9}\right\}, \quad\left\{1, z^{4}, z^{8}\right\}, \quad\left\{1, z^{6}\right\}
$$

In each case, the indicated subset is closed under multiplication; and therefore, the subset is a subgroup.
(b) Which elements of U_{12} generate U_{12} ? (Recall that the element g of the group $(G, *)$ generates G if every element of G is equal to $\underbrace{g * g * \cdots * g}_{n \text { times }}$, for some integer n.) Please give a complete explanation.
We see that z, z^{5}, z^{7}, and z^{11} generate U_{12}. Indeed $z=\left(z^{11}\right)^{11} \in\left\langle z^{11}\right\rangle, z=\left(z^{5}\right)^{5} \in\left\langle z^{5}\right\rangle$, and $z=\left(z^{7}\right)^{7} \in\left\langle z^{7}\right\rangle$. It follows that $\left\langle z^{11}\right\rangle,\left\langle z^{5}\right\rangle$, and $\left\langle z^{7}\right\rangle$ all are equal to $\langle z\rangle=U_{12}$. The other elements all generate smaller subgroups of U_{12} as is shown in (a).
2. Let $S=\mathbb{R} \backslash\{4\}$. Define $*$ on S by $a * b=20-4 a-4 b+a b$. Prove that $(S, *)$ is a group.
Closure: Take a, b from S. We must show that $a * b$ is in S. Well, $a * b=20-4 a-4 b+a b$, which is clearly a real number. We must check that $20-4 a-4 b+a b$ is not equal to 4 . If $20-4 a-4 b+a b$ were equal to 4 , then $20-4 a-4 b+a b=4$; so, $16-4 a-4 b+a b=0$; that is, $(a-4)(b-4)=0$; so $a=4$ or $b=4$. On the other hand, a and b are in S; so neither a nor b is 4 . We conclude that $20-4 a-4 b+a b \neq 4$; therefore, $20-4 a-4 b+a b \in S$

Associativity: Take a, b, and c from S. Observe that
$a *(b * c)=a *(20-4 b-4 c+b c)=20-4 a-4(20-4 b-4 c+b c)+a(20-4 b-4 c+b c)$

$$
=-60+16 a+16 b+16 c-4 a b-4 a c-4 b c+a b c .
$$

On the other hand,

$$
\begin{gathered}
(a * b) * c=(20-4 a-4 b+a b) * c=20-4(20-4 a-4 b+a b)-4 c+(20-4 a-4 b+a b) c \\
=-60+16 a+16 b+16 c-4 a b-4 a c-4 b c+a b c .
\end{gathered}
$$

We see that $a *(b * c)=(a * b) * c$.
Identity: The number 5 is the identity element of S because

$$
a * 5=20-4 a+-4(5)+a(5)=a
$$

and $5 * a=20-4(5)-4 a+5 a=a$ for all $a \in S$.
Inverses: Take $a \in S$. The inverse of a is $\frac{15-4 a}{4-a}$ because
$a * \frac{15-4 a}{4-a}=20-4 a-4\left(\frac{15-4 a}{4-a}\right)+a\left(\frac{15-4 a}{4-a}\right)=20-4 a+\frac{(-4+a)(15-4 a)}{4-a}$

$$
=20-4 a-(15-4 a)=5 .
$$

The operation * is commutative; so, $\frac{15-4 a}{4-a} * a$ is also equal to 0 . Notice, also, that $\frac{15-4 a}{4-a} \in S$ because $\frac{15-4 a}{4-a}$ is a real number (since $a \neq 4$) and $\frac{15-4 a}{4-a}$ is not equal to 4 ; because if $\frac{15-4 a}{4-a}$ were equal to 4 , then $\frac{15-4 a}{4-a}=4$, so $15-4 a=4(4-a)$; that is, $15=16$, which of course is not possible.
3. Let G be a group with identity element id. Suppose that H and K are subgroups of G with $H \neq\{\mathbf{i d}\}$ and $K \neq\{\mathbf{i d}\}$. Is it possible for $H \cap K$ to equal \{id\}? If $H \cap K=\{\mathbf{i d \}}$ is possible, then give an example. If $H \cap K=\{\mathrm{id}\}$ is not possible, then give a proof. (Recall that $H \cap K$ is the intersection of H and K; that is, $H \cap K=\{g \in G \mid g \in H$ AND $g \in K\}$.
Of course, $H \cap K$ is possible. Let G be the Klein 4 -group with 4 distinct elements id, a, b, c with identity element id, $a^{2}=b^{2}=c^{2}=\mathrm{id}, b a=a b=c$, $c a=a c=b, c b=b c=a$. We have seen examples of such groups. Let $H=\{\mathrm{id}, a\}$ and $K=\{\mathrm{id}, b\}$. The sets H and K are closed; hence they are subgroups of G. The intersection of H and K consists only of the identity element id.
4. Let G be a group. Suppose that H and K are subgroups of G. Does $H \cup K$ have to be a subgroup of G ? If $H \cup K$ is always a subgroup of G, then give a proof. If it is possible for $H \cup K$ not to be a subgroup of G, then give an example. (Recall that $H \cup K$ is the union of H and K; that is, $H \cup K=\{g \in G \mid g \in H$ OR $g \in K\}$.
Of course, $H \cup K$ does NOT have to be a subgroup of G. Take G, H, and K as in problem 3. So H and K are subgroups of G, but $H \cup K$ is not a subgroup of G because $H \cup K$ is not closed because a is in $H \cup K, b$ is in $H \cup K$, but $a b=c$ is not in $H \cup K$.
5. Let $(G, *)$ be an Abelian group with identity element id and $H=\{g \in G \mid g * g * g=\mathbf{i d}\}$. Prove that H is a subgroup of G.

Closure: Take a, b from H so $a * a * a=\mathrm{id}$ and $b * b * b=\mathrm{id}$. The group G is Abelian so

$$
(a * b) *(a * b) *(a * b)=(a * a * a) *(b * b * b)=\mathrm{id} * \mathrm{id}=\mathrm{id} .
$$

Thus, $a * b$ is in H
Associativity: The operation $*$ is associative on all of G, so $*$ is associative on the subset H of G.

Identity: We are given that id is the identity element of G. It follows that then $\mathrm{id} * \mathrm{id} * \mathrm{id}=\mathrm{id}$ and therefore, id $\in H$.

Inverses: Let $a \in G$. It follows that $a * a * a=\mathrm{id}$. We are told that G is a group. So a has an inverse, lets call it $a^{\text {inv }}$, in G, Multiply the above equation by $a^{\text {inv }}$ to get $\mathrm{id}=a^{\mathrm{inv}} * a^{\mathrm{inv}} * a^{\mathrm{inv}}$. Conclude that a^{inv} is in H.

