Math 546, Exam 1, Fall, 1994
PRINT Your Name: \qquad
There are 7 problems on 4 pages. The exam is worth a total of 50 points. Problem 1 is worth 8 points. The other problems are worth 7 points each.

1. TRUE or FALSE. (If true, PROVE it. If false, give a COUNTER EXAMPLE.) If H and K are subgroups of a group G, then the intersection $H \cap K$ is also a subgroup of G.
2. TRUE or FALSE. (If true, PROVE it. If false, give a COUNTER EXAMPLE.) If H and K are subgroups of a group G, then the union $H \cup K$ is also a subgroup of G.
3. Let G be an abelian group with identity element e. Let

$$
H=\left\{x \in G \mid x^{2}=e\right\} .
$$

Prove that H is a subgroup of G.
4. Let G be a group with identity element e. Suppose that a, b, and c are elements of G with $c * b * a=e$. Prove that $b * a * c$ is also equal to e.
5. Let \mathbb{R}^{*} represent the set of nonzero real numbers. Define a binary operation $*$ on \mathbb{R}^{*} by $a * b=b / a$. Is $\left(\mathbb{R}^{*}, *\right)$ a group? If so prove it. If not, show why not.
6. Let G be a group. Let

$$
H=\{x \in G \mid x y=y x \text { for all } y \in G\} .
$$

Prove that H is a subgroup of G.
7. Let G be a group with identity element e. Suppose that $x^{2}=e$ for all $x \in G$. Prove that G is an abelian group.

