Solution to the Quiz for June 3, 2003

Find the general solution of the following system of linear equations:

$$
\begin{array}{r}
x_{1}+x_{3}+x_{4}-2 x_{5}=1 \\
2 x_{1}+x_{2}+3 x_{3}-x_{4}+x_{5}=0 \\
3 x_{1}-x_{2}+4 x_{3}+x_{4}+x_{5}=1 .
\end{array}
$$

CHECK your answer!
The corresponding matrix is

$$
\left[\begin{array}{ccccc|c}
1 & 0 & 1 & 1 & -2 & 1 \\
2 & 1 & 3 & -1 & 1 & 0 \\
3 & -1 & 4 & 1 & 1 & 1
\end{array}\right]
$$

Replace $R 2 \mapsto R 2-2 R 1$ and $R 3 \mapsto R 3-3 R 1$ to get:

$$
\left[\begin{array}{ccccc|c}
1 & 0 & 1 & 1 & -2 & 1 \\
0 & 1 & 1 & -3 & 5 & -2 \\
0 & -1 & 1 & -2 & 7 & -2
\end{array}\right]
$$

Replace $R 3 \mapsto R 3+R 2$ to get:

$$
\left[\begin{array}{ccccc|c}
1 & 0 & 1 & 1 & -2 & 1 \\
0 & 1 & 1 & -3 & 5 & -2 \\
0 & 0 & 2 & -5 & 12 & -4
\end{array}\right]
$$

Replace $R 3 \mapsto(1 / 2) R 3$ to get:

$$
\left[\begin{array}{ccccc|c}
1 & 0 & 1 & 1 & -2 & 1 \\
0 & 1 & 1 & -3 & 5 & -2 \\
0 & 0 & 1 & -5 / 2 & 6 & -2
\end{array}\right]
$$

Replace $R 1 \mapsto R 1-R 3$ and $R 2 \mapsto R 2-R 3$ to get:

$$
\left[\begin{array}{ccccc|c}
1 & 0 & 0 & 7 / 2 & -8 & 3 \\
0 & 1 & 0 & -1 / 2 & -1 & 0 \\
0 & 0 & 1 & -5 / 2 & 6 & -2
\end{array}\right]
$$

The general sdolution of the original system of equations is:

$$
\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4} \\
x_{5}
\end{array}\right]=\left[\begin{array}{c}
3 \\
0 \\
-2 \\
0 \\
0
\end{array}\right]+x_{4}\left[\begin{array}{c}
-7 / 2 \\
1 / 2 \\
5 / 2 \\
1 \\
0
\end{array}\right]+x_{5}\left[\begin{array}{c}
8 \\
1 \\
-6 \\
0 \\
1
\end{array}\right] .
$$

We check three specific solutions. When $x_{4}=0$
and $x_{5}=0$, then our solution is

$$
\left[\begin{array}{c}
3 \\
0 \\
-2 \\
0 \\
0
\end{array}\right]
$$

and this is a solution because

$$
\begin{aligned}
& 3-2=1 \\
& 6-6=0 \\
& 9-8=1 . \checkmark
\end{aligned}
$$

When $x_{4}=2$ and $x_{5}=0$, then our solution is

$$
\left[\begin{array}{c}
-4 \\
1 \\
3 \\
2 \\
0
\end{array}\right]
$$

This really is a solution because

$$
\begin{aligned}
& -4+3+2=1 \\
& -8+1+9-2=0 \\
& -12-1+12+2=1 .
\end{aligned}
$$

When $x_{4}=0$ and $x_{5}=1$, then our solution is

$$
\left[\begin{array}{c}
11 \\
1 \\
-8 \\
0 \\
1
\end{array}\right] .
$$

This really is a solution because

$$
\begin{aligned}
& 11-8-2=1 \\
& 22+1-24+1=0 \\
& 33-1-32+1=1 .
\end{aligned}
$$

