Solution to the Quiz for June 17, 2003

Let U and V be subspaces of \mathbb{R}^{n}. Prove that the intersection, $U \cap V$, is also a subspace of \mathbb{R}^{n}.

Zero is in $U \cap C$: We know that zero is in U because U is a vector space. We know that zero is in V because V is a vector space. Thus, zero is in $U \cap V$.
$U \cap C$ is closed under addition: Take x and y from $U \cap C$. We know that $x, y \in U$ and U is a vector space. It follows that $x+y \in U$. We know that $x, y \in V$ and V is a vector space. It follows that $x+y \in V$. Now we know that $x+y \in U \cap V$.
$U \cap C$ is closed under scalar multiplication: Take x in $U \cap V$ and $r \in \mathbb{R}$. We know that $x \in U$, r is a scalar, and U is a vector space. It follows that $r x \in U$. We know that $x \in V, r$ is a scalar, and V is a vector space. It follows that $r x \in V$. Now we know that $r x \in U \cap V$.

