Solution to the Quiz for June 17, 2003

Let U and V be subspaces of \mathbb{R}^n . Prove that the intersection, $U \cap V$, is also a subspace of \mathbb{R}^n .

<u>Zero is in $U \cap C$ </u>: We know that zero is in U because U is a vector space. We know that zero is in V because V is a vector space. Thus, zero is in $U \cap V$.

<u> $U \cap C$ is closed under addition</u>: Take x and y from $U \cap C$. We know that $x, y \in U$ and U is a vector space. It follows that $x + y \in U$. We know that $x, y \in V$ and V is a vector space. It follows that $x+y \in U$. It follows that $x+y \in U$. Now we know that $x+y \in U \cap V$.

 $\frac{U \cap C}{x \text{ in } U \cap V} \text{ and } r \in \mathbb{R} \text{ . We know that } x \in U,$ r is a scalar, and U is a vector space. It followsthat $rx \in U$. We know that $x \in V$, r is a scalar, and V is a vector space. It follows that $rx \in V$. Now we know that $rx \in U \cap V$.