Solution to the Quiz for June 10, 2003

Suppose that the vectors $\left\{v_{1}, v_{2}, v_{3}\right\}$ in \mathbb{R}^{m} are linearly independent. Prove that the vectors $\left\{v_{1}, v_{1}+v_{2}, v_{1}+v_{2}+v_{3}\right\}$ are also linearly independent.

Suppose c_{1}, c_{2}, c_{3} are numbers with

$$
c_{1} v_{1}+c_{2}\left(v_{1}+v_{2}\right)+c_{3}\left(v_{1}+v_{2}+v_{3}\right)=0 .
$$

It follows that

$$
\left(c_{1}+c_{2}+c_{3}\right) v_{1}+\left(c_{2}+c_{3}\right) v_{2}+c_{3} v_{3}=0 .
$$

The vectors v_{1}, v_{2}, v_{3} are linearly independent. It follows that

$$
\begin{aligned}
c_{1}+c_{2}+c_{3} & =0 \\
c_{2}+c_{3} & =0 \\
c_{3} & =0
\end{aligned}
$$

Read from the bottom up to see that $c_{3}=0$, $c_{2}=0$, and $c_{1}=0$. We conclude that v_{1}, $v_{1}+v_{2}, v_{1}+v_{2}+v_{3}$ are linearly independent.

