Solution to the Quiz for April 7, 2003

Find the eigenvalues and eigenvectors of $A=\left[\begin{array}{cc}1 & -1 \\ 1 & 3\end{array}\right]$. The determinant of $A-\lambda I$ is
$\operatorname{det}\left[\begin{array}{cc}1-\lambda & -1 \\ 1 & 3-\lambda\end{array}\right]=(1-\lambda)(3-\lambda)+1=\lambda^{2}-4 \lambda+4=(\lambda-2)^{4}$.
The only eigenvalue for A is $\lambda=2$. The corresponding eigenspace is the nullspace of

$$
A-2 I=\left[\begin{array}{cc}
-1 & -1 \\
1 & 1
\end{array}\right]
$$

Replace row 2 by row 2 plus row 1 .

$$
\left[\begin{array}{cc}
-1 & -1 \\
0 & 0
\end{array}\right]
$$

Replace row 1 by minus row 1 .

$$
\left[\begin{array}{ll}
1 & 1 \\
0 & 0
\end{array}\right]
$$

The eigenspace of A which belongs to the eigenvalue $\lambda=2$ is the set of all vectors $\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right]$ which satisfies

$$
\begin{aligned}
& x_{1}=-x_{2} \\
& x_{2}=x_{2} .
\end{aligned}
$$

The vector $\left[\begin{array}{c}1 \\ -1\end{array}\right]$ is a basis for the eigenspace of A which belongs to $\lambda=2$.

Check. We see that

$$
A\left[\begin{array}{c}
1 \\
-1
\end{array}\right]=\left[\begin{array}{cc}
1 & -1 \\
1 & 3
\end{array}\right]\left[\begin{array}{c}
1 \\
-1
\end{array}\right]=\left[\begin{array}{c}
2 \\
-2
\end{array}\right]=2\left[\begin{array}{c}
1 \\
-1
\end{array}\right] . \checkmark
$$

