Solution to the Quiz for April 14, 2003

Find the eigenvalues and eigenvectors of

$$
A=\left[\begin{array}{lll}
2 & 1 & 2 \\
0 & 3 & 2 \\
0 & 0 & 2
\end{array}\right]
$$

The determinant of $A-\lambda I$ is

$$
\operatorname{det}\left[\begin{array}{ccc}
2-\lambda & 1 & 2 \\
0 & 3-\lambda & 2 \\
0 & 0 & 2-\lambda
\end{array}\right]=(2-\lambda)^{2}(3-\lambda)
$$

The eigenvalues of A are 2 and 3 . The eigenspace of A which belongs to $\lambda=2$ is the null space of

$$
A-2 I=\left[\begin{array}{lll}
0 & 1 & 2 \\
0 & 1 & 2 \\
0 & 0 & 0
\end{array}\right]
$$

Replace row 2 by row 2 minus row 1 to get

$$
\left[\begin{array}{lll}
0 & 1 & 2 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right] .
$$

The eigenspace of A which belongs to 2 is the set of all vectors $\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}\right]$, with

$$
\begin{aligned}
& x_{1}=x_{1} \\
& x_{2}=-2 x_{3} \\
& x_{3}=r
\end{aligned}
$$

The vectors $\left[\begin{array}{l}1 \\ 0 \\ 0\end{array}\right]$ and $\left[\begin{array}{c}0 \\ -2 \\ 1\end{array}\right]$ are a basis for the eigenspace

Check. We see that

$$
A\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right]=\left[\begin{array}{l}
2 \\
0 \\
0
\end{array}\right]=2\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right] \cdot \checkmark
$$

We also see that

$$
A\left[\begin{array}{c}
0 \\
-2 \\
1
\end{array}\right]=\left[\begin{array}{c}
0 \\
-4 \\
2
\end{array}\right]=2\left[\begin{array}{c}
0 \\
-2 \\
1
\end{array}\right] \cdot \checkmark
$$

The eigenspace of A which belongs to $\lambda=3$ is the null space of

$$
A-3 I=\left[\begin{array}{ccc}
-1 & 1 & 2 \\
0 & 0 & 2 \\
0 & 0 & -1
\end{array}\right]
$$

Replace row 2 by $1 / 2$ row 2 :

$$
\left[\begin{array}{ccc}
-1 & 1 & 2 \\
0 & 0 & 1 \\
0 & 0 & -1
\end{array}\right]
$$

Replace row 1 by row 1 minus 2 row 2 . Replace row 3 by row 3 plus row 2:

$$
\left[\begin{array}{ccc}
-1 & 1 & 0 \\
0 & 0 & 1 \\
0 & 0 & 0
\end{array}\right] .
$$

Multiply row 1 by minus 1 :

$$
\left[\begin{array}{ccc}
1 & -1 & 0 \\
0 & 0 & 1 \\
0 & 0 & 0
\end{array}\right] .
$$

The eigenspace of A which belongs to 3 is the set of all vectors $\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}\right]$, with

$$
\begin{aligned}
& x_{1}=x_{2} \\
& x_{2}=x_{2} \\
& x_{3}=0 .
\end{aligned}
$$

The vector $\left[\begin{array}{l}1 \\ 1 \\ 0\end{array}\right]$ is a basis for the eigenspace
of A which belongs to 3.

Check. We see that

$$
A\left[\begin{array}{l}
1 \\
1 \\
0
\end{array}\right]=\left[\begin{array}{l}
3 \\
3 \\
0
\end{array}\right]=3\left[\begin{array}{l}
1 \\
1 \\
0
\end{array}\right] . \checkmark
$$

