Solution to the Quiz for March 19, 2003

Let $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be the function that maps each point in \mathbb{R}^{2} to its reflection with respect to the x-axis. Give a formula for T and show that T is a linear transformation.

Observe that $T\left(\left[\begin{array}{l}x \\ y\end{array}\right]\right)=\left[\begin{array}{c}x \\ -y\end{array}\right]$. In other words, $T(v)=M v$ (be sure to read the last equation " T of v equals M times v "), where $M=\left[\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right]$. We saw in class that matrix multiplication always is a linear transformation. (Of course, you may verify this last assertion again. If M is a matrix, v and w are column vectors, and r is a number, then $M(v+w)=M v+M w$ holds because this is distribution and $M(r v)=r M v$, because this is the way that scalar multiplication interacts with matrix multiplication.)

