Solution to the Quiz for March 19, 2003

$$
\begin{aligned}
\text { Express } v=\left[\begin{array}{l}
1 \\
1 \\
0
\end{array}\right] \text { as a linear combination of } \\
u_{1}=\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right], \quad u_{2}=\left[\begin{array}{c}
-1 \\
0 \\
1
\end{array}\right], \quad \text { and } \quad u_{3}=\left[\begin{array}{c}
-1 \\
2 \\
-1
\end{array}\right] .
\end{aligned}
$$

(The problem is especially easy if you take advantage of the fact that u_{1}, u_{2}, u_{3} are an orthogonal set of vectors.) Check your answer!

We solve $v=c_{1} u_{1}+c_{2} u_{2}+c_{3} u_{3}$. Multiply both sides of the equation (on the left) by u_{1}^{T} to see that $2=3 c_{1}$. Mutilpy by u_{2}^{T} to see that $-1=2 c_{2}$. Multiply by u_{3}^{T} to see that $1=6 c_{3}$. We conclude that

$$
v=\frac{2}{3} u_{1}-\frac{1}{2} u_{2}+\frac{1}{6} c_{3} .
$$

This is correct because:

$$
\frac{2}{3} u_{1}-\frac{1}{2} u_{2}+\frac{1}{4} c_{3}=\frac{2}{3}\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right]-\frac{1}{2}+\left[\begin{array}{c}
-1 \\
0 \\
1
\end{array}\right]+\frac{1}{6}\left[\begin{array}{c}
-1 \\
2 \\
-1
\end{array}\right]=\left[\begin{array}{l}
1 \\
1 \\
0
\end{array}\right]=v \cdot \checkmark
$$

