\qquad

Quiz for September 10, 2009

Let v_{1}, v_{2}, v_{3} be linearly dependent vectors in \mathbb{R}^{m}. Prove that the vectors $v_{1}, v_{2}, v_{3}, v_{4}$ are linearly dependent for all vectors v_{4} in \mathbb{R}^{m}.

ANSWER: Fix an arbitrary vector v_{4} in \mathbb{R}^{m}. The first sentence guarantees that there are numbers a_{1}, a_{2}, a_{3}, at least one of which is non-zero, with $a_{1} v_{1}+a_{2} v_{2}+a_{3} v_{3}=0$. Thus, we have numbers $a_{1}, a_{2}, a_{3}, 0$, at least one of which is not zero, and $a_{1} v_{1}+a_{2} v_{2}+a_{3} v_{3}+0 v_{4}=0$. We conclude that the vectors $v_{1}, v_{2}, v_{3}, v_{4}$ are linearly dependent.

