\qquad

Quiz for September 26, 2006

Let U and V be subspaces of \mathbb{R}^{n}. Prove that the intersection $U \cap V$ is a subspace of \mathbb{R}^{n}.

ANSWER:

Zero vector: The zero vector is in U since U is a subspace of \mathbb{R}^{n}. The zero vector in V since V is a subspace of \mathbb{R}^{n}. Therefore, the zero vector is in the intersection $U \cap V$.

Closed under addition: Consider vectors x and y in the intersection $U \cap V$. The vectors x and y are both in the subspace U. The subspace U is closed under addition. It follows that the sum $x+y$ is in U. The vectors x and y are both in the subspace V. The subspace V is closed under addition. It follows that the sum $x+y$ is in V. Combine these two conclusions to see that the sum $x+y$ is in the intersection $U \cap V$.

Closed under scalar multiplication: Consider a vector x in $U \cap V$ and a scalar $c \in \mathbb{R}$. The vector x is in the subspace U and U is closed under scalar multiplication; thus, $c x$ is in U. The vector x is in the subspace V and V is closed under scalar multiplication; thus, $c x$ is in V. Combine these two conclusions to see that the $c x$ is in the intersection $U \cap V$.

