PRINT Your Name:

Quiz for September 26, 2006

Let U and V be subspaces of \mathbb{R}^n . Prove that the intersection $U\cap V$ is a subspace of \mathbb{R}^n .

ANSWER:

Zero vector: The zero vector is in U since U is a subspace of \mathbb{R}^n . The zero vector in V since V is a subspace of \mathbb{R}^n . Therefore, the zero vector is in the intersection $U \cap V$.

Closed under addition: Consider vectors x and y in the intersection $U \cap V$. The vectors x and y are both in the subspace U. The subspace U is closed under addition. It follows that the sum x + y is in U. The vectors x and y are both in the subspace V. The subspace V is closed under addition. It follows that the sum x + y is in V. Combine these two conclusions to see that the sum x + yis in the intersection $U \cap V$.

Closed under scalar multiplication: Consider a vector x in $U \cap V$ and a scalar $c \in \mathbb{R}$. The vector x is in the subspace U and U is closed under scalar multiplication; thus, cx is in U. The vector x is in the subspace V and V is closed under scalar multiplication; thus, cx is in V. Combine these two conclusions to see that the cx is in the intersection $U \cap V$.