\qquad

Quiz for September 20, 2005

Let U and V be the following subspaces of \mathbb{R}^{3} :

$$
U=\left\{\left.\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right] \right\rvert\, x_{1}+x_{2}=0\right\}
$$

and

$$
V=\left\{\left.\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right] \right\rvert\, x_{2}-x_{3}=0\right\} .
$$

Is the union $U \cup V$ a subspace of \mathbb{R}^{3} ? Prove your answer.
ANSWER: NO. The union $U \cup V$ is NOT closed under addition. The vector $v_{1}=\left[\begin{array}{c}1 \\ -1 \\ 0\end{array}\right]$ is in $U \cup V$ because $v_{1} \in U$. The vector $v_{2}=\left[\begin{array}{l}0 \\ 1 \\ 1\end{array}\right]$ is in $U \cup V$ because $v_{2} \in V$. However, the sum $v_{1}+v_{2}=\left[\begin{array}{l}1 \\ 0 \\ 1\end{array}\right]$ is not in $U \cup V$ since $v_{1}+v_{2} \notin U$ and $v_{1}+v_{2} \notin V$.

