\qquad

Quiz for September 19, 2006

(a) Give an example of non-singular matrices A and B with $A+B$ singular.
(b) Give an example of singular matrices A and B with $A+B$ non-singular.

ANSWER:

(a) The matrices $A=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$ and $B=\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right]$ are non-singular (because the columns are linearly independent in each matrix), but the sum $A+B=\left[\begin{array}{ll}1 & 1 \\ 1 & 1\end{array}\right]$ is singular (since the sum sends the non-zero vector $\left[\begin{array}{c}-1 \\ 1\end{array}\right]$ to zero.)
(b) The matrices $A=\left[\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right]$ and $B=\left[\begin{array}{ll}0 & 0 \\ 0 & 1\end{array}\right]$ are singular (since $A\left[\begin{array}{l}0 \\ 1\end{array}\right]$ and $B\left[\begin{array}{l}1 \\ 0\end{array}\right]$ are both zero and neither $\left[\begin{array}{l}0 \\ 1\end{array}\right]$ nor $\left[\begin{array}{l}1 \\ 0\end{array}\right]$ is zero); but the sum $A+B=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$ is non-singular (because the columns are linearly independent).

