\qquad

Quiz for September 13, 2005

Suppose A and B are 2×2 nonsingular matrices. Does $A+B$ have to have to be a nonsingular matrix? If yes, then prove it. If no, then give an example.
ANSWER: NO. Here is an example. The matrices $A=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$ and $B=\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right]$ are nonsingular because their columns are linearly independent; however, the sum $A+B=\left[\begin{array}{ll}1 & 1 \\ 1 & 1\end{array}\right]$ is a singular matrix because its columns are linearly dependent.

