\qquad

Quiz for August 30, 2005

Suppose A and B are 2×2 matrices with A not equal to the zero matrix and $A^{2}=A B$. Does A have to equal B ? If yes, then prove it. If no, then give an example.
ANSWER: NO. Here is one example. Take $A=\left[\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right]$ and $B=$ $\left[\begin{array}{cc}75 & 144 \\ 0 & 0\end{array}\right]$. We see that

$$
A^{2}=\left[\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right]\left[\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right]=\left[\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right]
$$

and

$$
A B=\left[\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right]\left[\begin{array}{cc}
75 & 144 \\
0 & 0
\end{array}\right]=\left[\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right] .
$$

So, $A^{2}=A B, A$ is not the zero matrix, and $A \neq B$.

