\qquad

Quiz for August 23, 2005

Solve

$$
\begin{aligned}
& x_{1}+2 x_{2}-x_{3}=2 \\
& x_{1}+x_{2}+x_{3}=3
\end{aligned}
$$

Express your answer in the form $x=a t+b, y=c t+d$, and $z=e t+f$.
ANSWER: Replace $E 2$ with $E 2-E 1$ to obtain:

$$
\begin{aligned}
x_{1}+2 x_{2}-x_{3} & =2 \\
-x_{2}+2 x_{3} & =1
\end{aligned} .
$$

Replace $E 2$ with $-E 2$ to obtain:

$$
\begin{array}{r}
x_{1}+2 x_{2}-x_{3}=2 \\
x_{2}-2 x_{3}=-1
\end{array} .
$$

Replace $E 1$ with $E 1-2 E 2$ to obtain:

$$
\begin{array}{r}
x_{1}+3 x_{3}=4 \\
x_{2}-2 x_{3}=-1
\end{array} .
$$

The general solution of the system of equations is:

$$
\begin{aligned}
& x_{1}=4-3 x_{3} \\
& x_{2}=-1+2 x_{3} \\
& x_{3}=r x_{3} \\
& \hline
\end{aligned}
$$

Check When $x_{3}=0$, the solution is $x_{1}=4, x_{2}=-1$, and $x_{3}=0$. This works because:

$$
\begin{aligned}
& 4-2=2 \\
& 4-1=3
\end{aligned}
$$

Also, when $x_{3}=1$, the solution is $x_{1}=1, x_{2}=1$, and $x_{3}=1$. This works because:

$$
\begin{aligned}
& 1+2-1=2 \\
& 1+1+1=3
\end{aligned}
$$

