\qquad

Quiz for June 5, 2006

Let v_{1}, v_{2}, and v_{3} be linearly independent vectors in \mathbb{R}^{m}. Prove that the vectors $v_{1}, v_{1}+v_{2}, v_{1}+v_{2}+v_{3}$ are also linearly independent.

ANSWER: Suppose c_{1}, c_{2}, c_{3} are numbers with

$$
\begin{equation*}
c_{1}\left(v_{1}\right)+c_{2}\left(v_{1}+v_{2}\right)+c_{3}\left(v_{1}+v_{2}+v_{3}\right)=0 . \tag{*}
\end{equation*}
$$

We must show that c_{1}, c_{2}, and c_{3} must be zero. Rewrite $\left(^{*}\right)$ as

$$
\left(c_{1}+c_{2}+c_{3}\right) v_{1}+\left(c_{2}+c_{3}\right) v_{2}+c_{3} v_{3}=0
$$

The vectors v_{1}, v_{2}, and v_{3} are linearly independent; so,

$$
\left\{\begin{array}{l}
c_{1}+c_{2}+c_{3}=0 \\
c_{2}+c_{3}=0 \\
c_{3}=0
\end{array}\right.
$$

Read from the bottom equation up to learn to c_{3} must be zero; hence, c_{2} must be zero; and finally, c_{1} must be zero.

