$\qquad$

## Quiz for June 25, 2007

Let $A$ be an $m \times m$ nonsingular matrix and $B$ be an $m \times n$ matrix. Prove that the column space of $A B$ has the same dimension as the column space of $B$.

ANSWER: This problem requires some cleverness. We use the fourth theorem about dimension. This Theorem is also known as the rank-nulity theorem. This theorem tells us that the dimension of the column space of $A B$ plus the dimension of the null space of $A B$ is equal to the number of columns of $A B$. The theorem also tells us that the dimension of the column space of $B$ plus the dimension of the null space of $B$ is equal to the number of columns of $B$. The matrices $A B$ and $B$ both have $n$ columns. We will prove that the column space of $A B$ has the same dimension as the column space of $B$ by proving that the null space of $A B$ has the same dimension as the null space of $B$; and we will prove this by showing that the null space of $A B$ is equal to the null space of $B$.

Take a vector $x$ in the null space of $B$. We see that $A B x=A(0)=0$ because $x$ is in the null space of $B$. We conclude that $x$ is in the null space of $A B$.

Take a vector $x$ in the null space of $A B$. So, $A B x=0$. In other words, $B x$ is a vector that is sent to zero by $A$. The matrix $A$ is non-singular; so the only vector that $A$ sends to 0 is 0 . It follows that $B x$ is already zero, and $x$ is in the null space of $B$.

