\qquad

Quiz for June 22, 2004

Let W be the subspace of \mathcal{P}_{4} which is defined as follows: the polynomial $p(x)$ is in W if and only if $p(1)+p(-1)=0$ and $p(2)+p(-2)=0$. Find the dimension of W. Explain.

ANSWER: We find a basis for W. The vector space W is

$$
\left\{a_{0}+a_{1} x+a_{2} x^{2}+a_{3} x^{3}+a_{4} x^{4} \left\lvert\, \begin{array}{l}
a_{0}+a_{1}+a_{2}+a_{3}+a_{4}+a_{0}-a_{1}+a_{2}-a_{3}+a_{4}=0 \\
a_{0}+2 a_{1}+4 a_{2}+8 a_{3}+16 a_{4}+a_{0}-2 a_{1}+4 a_{2}-8 a_{3}+16 a_{4}=0
\end{array}\right.\right\} .
$$

We solve the equations $M a=0$ with

$$
M=\left[\begin{array}{ccccc}
2 & 0 & 2 & 0 & 2 \\
2 & 0 & 8 & 0 & 32
\end{array}\right] \quad \text { and } \quad a=\left[\begin{array}{l}
a_{0} \\
a_{1} \\
a_{2} \\
a_{3} \\
a_{4}
\end{array}\right]
$$

Apply $R_{2} \mapsto R_{2}-R_{1}$ to get

$$
\left[\begin{array}{ccccc}
2 & 0 & 2 & 0 & 2 \\
0 & 0 & 6 & 0 & 30
\end{array}\right] .
$$

Divide row 1 by 2 and row 2 by 6 to get:

$$
\left[\begin{array}{lllll}
1 & 0 & 1 & 0 & 1 \\
0 & 0 & 1 & 0 & 5
\end{array}\right] .
$$

Apply $R_{1} \mapsto R_{1}-R_{2}$ to get

$$
\left[\begin{array}{ccccc}
1 & 0 & 0 & 0 & -4 \\
0 & 0 & 1 & 0 & 5
\end{array}\right] .
$$

So, a_{0} and a_{2} are the dependent variables and a_{1}, a_{3}, and a_{4} are the free variables. We have

$$
\left[\begin{array}{l}
a_{0} \\
a_{1} \\
a_{2} \\
a_{3} \\
a_{4}
\end{array}\right]=a_{1}\left[\begin{array}{l}
0 \\
1 \\
0 \\
0 \\
0
\end{array}\right]+a_{3}\left[\begin{array}{l}
0 \\
0 \\
0 \\
1 \\
0
\end{array}\right]+a_{4}\left[\begin{array}{c}
4 \\
0 \\
-5 \\
0 \\
1
\end{array}\right] .
$$

We now know that W is spanned by the polynomials $x, x^{3}, 4-5 x^{2}+x^{4}$. These polynomials are obviously linearly independent. We conclude that x, x^{3}, $4-5 x^{2}+x^{4}$ is a basis for W and W has dimension 3 .

