PRINT Your Name: \qquad

Quiz for June 15, 2004

Let W be a subspace of \mathbb{R}^{n} and let A be an $m \times n$ matrix. Define V to be the following subset of \mathbb{R}^{m} :

$$
V=\left\{y \in \mathbb{R}^{m} \mid y=A x \text { for some } x \text { in } W\right\} .
$$

Prove that V is a subspace of \mathbb{R}^{m}.

ANSWER:

The set V is closed under addition: Take arbitrary elements y_{1} and y_{2} of V. The definition of V tells us that there exist x_{1} and x_{2} in W with $y_{1}=A x_{1}$ and $y_{2}=A x_{2}$, We see that $y_{1}+y_{2}=A x_{1}+A x_{2}=A\left(x_{1}+x_{2}\right)$. We know that $x_{1}+x_{2}$ is in W, because W is a vector space. Thus, $y_{1}+y_{2}$ is in V.

The set V is closed under scalar multiplication: Keep the arbitrary vector $y_{1} \in V$ from above. Let r be an arbitrary real number. We see that $r y_{1}=r A x_{1}=A\left(r x_{1}\right)$. The vector $r x_{1}$ is in W, because W is a vector space; and therefore, $r y_{1}$ is in V.

The set V contains the zero vector: The zero vector 0 of \mathbb{R}^{n} is in the vector space W; therefore $0=A 0$ is in V.

