\qquad

Quiz for June 1, 2006

Recall that the matrix A is called symmetric if $A^{\mathrm{T}}=A$.
Let A and B be 2×2 symmetric matrices. Does $A B$ have to be a symmetric matrix? If "yes", then prove the statement. If "no", then give a counterexample. ANSWER: NO! Let $A=\left[\begin{array}{ll}0 & 1 \\ 1 & 2\end{array}\right]$ and $B=\left[\begin{array}{ll}1 & 2 \\ 2 & 3\end{array}\right]$. We see that A is a symmetrix matrix, and B is a symmetric matrix, but

$$
A B=\left[\begin{array}{ll}
0 & 1 \\
1 & 2
\end{array}\right]\left[\begin{array}{ll}
1 & 2 \\
2 & 3
\end{array}\right]=\left[\begin{array}{ll}
2 & 3 \\
4 & 8
\end{array}\right]
$$

is not a symmetrix matrix.

