PRINT Your Name:

Quiz for June 1, 2004

Solve the following system of equations:

ANSWER: Start with the matrix

[1	1	0	0	-1	1	
0	1	2	1	3	1	
1	0	-1	1	1	0	

Apply $R_3 \mapsto R_3 - R_1$ to obtain

$$\begin{bmatrix} 1 & 1 & 0 & 0 & -1 & | & 1 \\ 0 & 1 & 2 & 1 & 3 & | & 1 \\ 0 & -1 & -1 & 1 & 2 & | & -1 \end{bmatrix}$$

Apply $R_1 \mapsto R_1 - R_2$ and $R_3 \mapsto R_3 + R_2$ to obtain

$$\begin{bmatrix} 1 & 0 & -2 & -1 & -4 & | & 0 \\ 0 & 1 & 2 & 1 & 3 & | & 1 \\ 0 & 0 & 1 & 2 & 5 & | & 0 \end{bmatrix}$$

Apply $R_1 \mapsto R_1 + 2R_3$ and $R_2 \mapsto R_2 - 2R_3$ to obtain

[1	0	0	3	6	0	
0	1	0	-3	-7	1	
0	0	1	2	5	0	

This matrix is in reduced row echelon from. The solution set is the set of

 $\begin{bmatrix} x_2 \\ x_3 \\ x_4 \\ x_5 \end{bmatrix}$

such that

$$\begin{array}{rl} x_1 = & -3x_4 - 6x_5 \\ x_2 = & 1 + 3x_4 + 7x_5 \\ x_3 = & -2x_4 - 5x_5 \end{array}$$

such that x_4 and x_5 are arbitrary. A different way to say this is to say that the solution set is

~		$\begin{bmatrix} 0 \\ 1 \\ 0 \\ 0 \\ 0 \end{bmatrix}$	$+x_{4}$	$\begin{bmatrix} -3 \\ 3 \\ -2 \\ 1 \\ 0 \end{bmatrix}$	$+x_{5}$	$\begin{bmatrix} -6 \\ 7 \\ -5 \\ 0 \\ 1 \end{bmatrix}$	$\left x_4, x_5 \in \mathbb{R} \right\rangle$
	l					1	J

Check. Our answer is correct. When $x_4 = x_5 = 0$ our answer is

```
\begin{bmatrix} 0\\1\\0\\0\\0\end{bmatrix}
```

and this proposed solution works because

$$1 = 1$$
$$1 = 1$$
$$0 = 0.\checkmark$$

When $x_4 = 1$ and $x_5 = 0$ our answer is

$$\begin{bmatrix} -3\\4\\-2\\1\\0 \end{bmatrix}$$

and this proposed solution works because

$$-3 + 4 = 1$$

4 - 4 + 1 = 1
-3 + 2 + 1 = 0.

When $x_4 = 0$ and $x_5 = 1$ our answer is

$$\begin{bmatrix} -6\\8\\-5\\0\\1 \end{bmatrix}$$

and this proposed solution works because

$$-6 + 8 - 1 = 1$$

8 - 10 + 3 = 1
-6 + 5 + 1 = 0.