PRINT Your Name:

Quiz for April 5, 2011

Let $T: \mathbb{R}^2 \to \mathbb{R}^3$ be a linear transformation such that $T\left(\begin{bmatrix}1\\0\end{bmatrix}\right) = \begin{bmatrix}1\\0\\-1\end{bmatrix}$

and $T\left(\begin{bmatrix}0\\1\end{bmatrix}\right) = \begin{bmatrix}2\\1\\0\end{bmatrix}$. Find $T\left(\begin{bmatrix}3\\2\end{bmatrix}\right)$. Explain what you are doing VERY thoroughly. Write in complete sentences.

Answer: We see that $\begin{bmatrix} 3\\2 \end{bmatrix} = 3 \begin{bmatrix} 1\\0 \end{bmatrix} + 2 \begin{bmatrix} 0\\1 \end{bmatrix}$. We use the fact that T is a linear transformation to see that

$$T\left(\begin{bmatrix}3\\2\end{bmatrix}\right) = T\left(3\begin{bmatrix}1\\0\end{bmatrix} + 2\begin{bmatrix}0\\1\end{bmatrix}\right) = 3T\left(\begin{bmatrix}1\\0\end{bmatrix}\right) + 2T\left(\begin{bmatrix}0\\1\end{bmatrix}\right) = 3\begin{bmatrix}1\\0\\-1\end{bmatrix} + 2\begin{bmatrix}2\\1\\0\end{bmatrix}$$
$$= \begin{bmatrix}7\\2\\-3\end{bmatrix}.$$