Quiz for February 28, 2003

Let A be the matrix

$$
A=\left[\begin{array}{cccc}
1 & 2 & 3 & -1 \\
3 & 5 & 8 & -2 \\
1 & 1 & 2 & 0
\end{array}\right] .
$$

(a) Find a basis for the null space of A.
(b) Find a basis for the column space of A.
(c) Find a basis for the row space of A.

Replace row 2 with row 2 minus 3 times row 1. Replace row 3 with row 3 minus row 1.

$$
\left[\begin{array}{cccc}
1 & 2 & 3 & -1 \\
0 & -1 & -1 & 1 \\
0 & -1 & -1 & 1
\end{array}\right] .
$$

Replace row 1 with row 1 plus 2 row 2 . Replace row 3 with row 3 minus row 2 .

$$
\left[\begin{array}{cccc}
1 & 0 & 1 & 1 \\
0 & -1 & -1 & 1 \\
0 & 0 & 0 & 0
\end{array}\right] .
$$

Replace row 2 by minus row 2 .

$$
\left[\begin{array}{cccc}
1 & 0 & 1 & 1 \\
0 & 1 & 1 & -1 \\
0 & 0 & 0 & 0
\end{array}\right] .
$$

The null space of A is the set of all $\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{3} \\ x_{4}\end{array}\right]$ with

$$
\begin{aligned}
x_{1} & =-x_{3}-x_{4} \\
x_{2} & =-x_{3}+x_{4} \\
x_{3} & =x_{3} \\
x_{4} & =x_{4}
\end{aligned}
$$

So, a basis for the null space of A is

$$
\text { (a) }\left[\begin{array}{c}
-1 \\
-1 \\
1 \\
0
\end{array}\right],\left[\begin{array}{c}
-1 \\
1 \\
0 \\
1
\end{array}\right]
$$

A basis for the column space of A is

$$
\text { (b) }\left[\begin{array}{l}
1 \\
3 \\
1
\end{array}\right],\left[\begin{array}{l}
2 \\
5 \\
1
\end{array}\right]
$$

A basis for the row space of A is

$$
\text { (c) }\left[\begin{array}{llll}
1 & 0 & 1 & 1
\end{array}\right],\left[\begin{array}{llll}
0 & 1 & 1 & -1
\end{array}\right]
$$

