\qquad

Quiz for February 22, 2011

Let A and B be $n \times n$ matrices. Let V_{1} be the null space of A, V_{2} be the null space of B, and V_{3} be the null space of $A+B$. Prove that $V_{1} \cap V_{2}$ is contained in V_{3}. Recall that the intersection, $V_{1} \cap V_{2}$, of the two sets V_{1} and V_{2} is the set which contains those elements that are in both V_{1} and V_{2}.

ANSWER: Take $v \in V_{1} \cap V_{2}$. We have chosen v in the null space of A and in the null space of B. We will now show that v is in the null space of $A+B$. We compute

$$
(A+B) v=A v+B v=0+0=0
$$

The first equality is distribution. The second equality follows since v is in the null space of A and v is in the null space of B. We have shown that v is in the null space of $A+B$; thus, $v \in V_{3}$.

