PRINT Your Name:

$$
\text { Quiz for November 15, } 2005
$$

Let $A=\left[\begin{array}{cc}1 & 0 \\ 10 & 2\end{array}\right]$. Find a diagonal matrix D and an invertible matrix S with $A=S D S^{-1}$.

Answer: The eigenvalues of A are $\lambda=1,2$. The vector $v_{1}=\left[\begin{array}{c}1 \\ -10\end{array}\right]$ is an eigenvector of A belonging to $\lambda=1$ because $A v_{1}=\left[\begin{array}{cc}1 & 0 \\ 10 & 2\end{array}\right]\left[\begin{array}{c}1 \\ -10\end{array}\right]=\left[\begin{array}{c}1 \\ -10\end{array}\right]=v_{1}$. The vector $v_{2}=\left[\begin{array}{l}0 \\ 2\end{array}\right]$ is an eigenvector of A belonging to $\lambda=2$ because $A v_{2}=\left[\begin{array}{cc}1 & 0 \\ 10 & 2\end{array}\right]\left[\begin{array}{l}0 \\ 1\end{array}\right]=\left[\begin{array}{l}0 \\ 2\end{array}\right]=2 v_{2}$. Let

$$
S=\left[\begin{array}{cc}
1 & 0 \\
-10 & 2
\end{array}\right] \quad \text { and } \quad D=\left[\begin{array}{ll}
1 & 0 \\
0 & 2
\end{array}\right] .
$$

We have just calculated that $A S=S D$. In other words, $A=S D S^{-1}$.

