\qquad

Quiz for October 11, 2005

Let A be a 5×4 matrix. What is the largest possible value for the rank of A ? What is the smallest possible value for the nullity of A ? Explain.

ANSWER: The rank of A is the dimension of the columns space of A. The column space of A is spanned by the four columns of A. Some subset of these four columns forms a basis for the column space of A; so the dimension of the column space of A is less than or equal to 4 . We notice that this maximum value is attained sometimes, for example in

$$
\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0
\end{array}\right] .
$$

The rank of A plus the nullity of A is equal to the number of columns of A. The nullity is minimized when the rank is maximized. So the minimum possible nullity for A is 0 . Indeed, the indicated matrix has nullity zero.

